The method of conventional glass melting is used to study the glass formation region of Bi2O3-B2O3-TiO2-La2O3 system. The instrument of Differential Scanning Calorimeter (DSC) is used to research the glass stability...The method of conventional glass melting is used to study the glass formation region of Bi2O3-B2O3-TiO2-La2O3 system. The instrument of Differential Scanning Calorimeter (DSC) is used to research the glass stability. Raman spectra and IR spectra are used to speculate on the structure of glasses. The refractive index of glass is measured by prism coupler. With increase of Bi2O3, the glass stability, the amount of [BiO3] group and boron-oxygen loops decrease, while the content of B-O- bond, refractive index and nonlinear refractive index increase.展开更多
The nonlinear refractive index and absorption coefficient of single\|shell semiconductor carbon nanotubes(CN s ) are calculated based on the two\|band approximation and Genkin\|Mednis approach. The results of nonlin...The nonlinear refractive index and absorption coefficient of single\|shell semiconductor carbon nanotubes(CN s ) are calculated based on the two\|band approximation and Genkin\|Mednis approach. The results of nonlinear refractive index and absorption coefficient reach the order of 10 -8 and 10 -4 cm 2\5W -1 separately, which indicates that CN s have wonderful nonlinear optical properties. Taking into account the temperature effect and overlapping of σ and π orbits, the effect of relaxation term and chiral angle is discussed. The results show that the smaller the relaxation term, the larger the nonlinear absorption coefficient and refractive index. At the same time, CN s with different chiral angles have different results due to their different energy gap.展开更多
In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson...In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson self-consistently. The linear, nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness. The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness. In addition, it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration. The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.展开更多
By use of the Keldysh non-equilibrium Green’s-function methods, the third harmonic susceptibilities of two polyaniline families, PANI-HCl and PANI-H 3PO 4, are calculated [ x (3) ( ω )≈10 -12 esu]. It was found tha...By use of the Keldysh non-equilibrium Green’s-function methods, the third harmonic susceptibilities of two polyaniline families, PANI-HCl and PANI-H 3PO 4, are calculated [ x (3) ( ω )≈10 -12 esu]. It was found that the third harmonic susceptibility of polyaniline strongly depends on the delocalization of the electrons. The refractive indices n ( λ =589 nm) of PANI-HCl and PANI-H 3PO 4 are calculated by use of three common methods (the Lorentz-Lorentz theoretical model, the Gladstone-Dale group contribution and the Vogel group correlation) based on group contributions to molar refraction. The calculated n values are varied from 1.31 to 1.42 for PANI-HCl and 1.36 to 1.45 for PANI-H 3PO 4.展开更多
An experimental study of the nonlinear changes in refractive index and transmission coefficient of single-crystal ZnSe:Fe2+, fabricated through the Fe-diffusion method, at long-pulse (~300 ns), sub-mJ, 2.94-mm Z-scan ...An experimental study of the nonlinear changes in refractive index and transmission coefficient of single-crystal ZnSe:Fe2+, fabricated through the Fe-diffusion method, at long-pulse (~300 ns), sub-mJ, 2.94-mm Z-scan probing is reported. As well, a theoretical model based on the generalized Avizonis-Grotbeck equations is developed and applied for straightforward fitting of the open- and closed-aperture Z-scans, obtained for ZnSe:Fe2+ with different Fe2+ centers concentrations. The modeling results reveal that the contributions in the absorption and refractive index nonlinearities of ZnSe:Fe2+ are “common” resonant-absorption saturation (the minor part) and pulse-induced heating of the samples (the major part), which are strongly dependent on Fe2+ concentrations. Large values of the index change (>~10-3) and partial resonant-absorption bleaching (limited by ~50%), both produced via the thermal effect mainly, are the features of the ZnSe:Fe2+ samples inherent to this type of excitation.展开更多
Nonlinear properties of two different crude oils from west-south Iran reservoirs have been investigated using the single beam Z-scan technique. The nonlinear refractive indices of the samples were measured by use of d...Nonlinear properties of two different crude oils from west-south Iran reservoirs have been investigated using the single beam Z-scan technique. The nonlinear refractive indices of the samples were measured by use of diode laser in the CW regime and at the wavelength 660 nm. The experiment results showed that the samples have large and negative refractive index nonlinear refraction coefficient. These results showed that the crude oil has significant nonlinear properties and it could be a candidate for photonic and nonlinear optical devices and also this information can be used in petroleum science and oceanology and etc.展开更多
Nonlinear optical(NLO)materials play an increasingly important role in laser technology.Birefringence is one of the most important parameters for NLO materials to realize angle phase-matching conditions.In comparison ...Nonlinear optical(NLO)materials play an increasingly important role in laser technology.Birefringence is one of the most important parameters for NLO materials to realize angle phase-matching conditions.In comparison with other desirable optical properties,the availability of birefringence and refractive index dispersion is especially problematic owing to the strict requirements for single crystals.In this review,we described how to obtain the refractive index and birefringence of NLO materials from crystals sub-millimeters to centimeters in size.Espe-cially,recently developed methods including the minimum deflection angle method,auto-collimation method,prism coupling method,oil immersion technique,interference color method,and theoretical calculation(DFT)for rapid assessment of birefringence are summarized,the contents of which are mainly focused on the principles and typical applications,together with the advantages and drawbacks.In addition,representative examples of bire-fringent measurements were presented.The purpose of this work is to provide a useful perspective on the characterization of birefringence for NLO materials.It is hoped that this review can give a clear description of the birefringence measurements and accelerate the discovery of new NLO crystals.展开更多
Liquid-phase-exfoliation technology was utilized to prepare layered MoS2, WS2, and MoSe2 nanosheets in cyclohexylpyrrolidone. The nonlinear optical response of these nanosheets in dispersions was investigated by obser...Liquid-phase-exfoliation technology was utilized to prepare layered MoS2, WS2, and MoSe2 nanosheets in cyclohexylpyrrolidone. The nonlinear optical response of these nanosheets in dispersions was investigated by observing spatial self-phase modulation(SSPM) using a 488 nm continuous wave laser beam. The diffraction ring patterns of SSPM were found to be distorted along the vertical direction right after the laser traversing the nanosheet dispersions. The nonlinear refractive index of the three transition metal dichalcogenides dispersions n2 was measured to be 10-7cm2W-1, and the third-order nonlinear susceptibility χ(3)10-9 esu. The relative change of effective nonlinear refractive index Δn2e∕n(2e) of the MoS2, WS2, and MoSe2 dispersions can be modulated 0.012–0.240, 0.029–0.154, and 0.091–0.304, respectively, by changing the incident intensities. Our experimental results imply novel potential application of two-dimensional transition metal dichalcogenides in nonlinear phase modulation devices.展开更多
This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7× 1...This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7× 10^-6 cm^2/W induced by thermo-optical effect is obtained. It indicates that the sample has excellent optical non- linear properties. The physical mechanism of the great nonlinear optical effect is analysed and the optical conjugate characteristic is also discussed with degenerate four-wave-mixing. The phase conjugate wave diffracted from the formative refractive index grating in the sample is acquired and its equivalent reflectivity reaches about 22%. On this basis, the reflective wave phase-conjugated mirror system was designed, and the image aberration experienced in propagation in the storage experiment is corrected by using the system.展开更多
A thermal lens technique is adopted using a single modulated continuous wave (cw) 532-nm laser beam to evaluate the nonlinear refractive index n2, and the thermo-optic coefficient dn/dT, in polymer Poly (1-naphthyl...A thermal lens technique is adopted using a single modulated continuous wave (cw) 532-nm laser beam to evaluate the nonlinear refractive index n2, and the thermo-optic coefficient dn/dT, in polymer Poly (1-naphthyl methacrylate) (P-1-NM) dissolved in chloroform, tetrahydrofuran (THF), and dimethyl sulfoxide (DMSO) solvents. The results are compared with Z-scan and diffraction ring techniques. The comparison reveals the effectiveness and the simplicity of the TTL modulation technique. The physical origin is discussed for the obtained results.展开更多
The Z-scan technique is a simple and effective tool for determining nonlinear optical properties of materials. This technique is utilized in meas-urement of urea and uric acid in blood. The nonlinear refractive index ...The Z-scan technique is a simple and effective tool for determining nonlinear optical properties of materials. This technique is utilized in meas-urement of urea and uric acid in blood. The nonlinear refractive index of urea and uric acid are found to vary linearly with concentration. Hence by calculating the nonlinear refractive index it is possible to measure their concentra-tion in the sample. The results of this method are found to be in good agreement with the conventional colorimetric method.展开更多
The nonlinear optical properties of a phosphate vitreous system [(ZnO)x-(MgO)30-x-(P2O5)70], where x=8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using th...The nonlinear optical properties of a phosphate vitreous system [(ZnO)x-(MgO)30-x-(P2O5)70], where x=8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using the Z-scan technique. In the experiment, a continuous-wave laser with a wavelength of 405 nm was utilized to determine the sign and value of the nonlinear refractive (NLR) index and the absorption coefficient with closed and opened apertures of the Z-scan setup. The NLR index was found to increase with the ZnO concentration in the glass samples by an order of 10-10 cm2·W-1. The real and imaginary parts of the third-order nonlinear susceptibility were calculated by referring to the NLR index (n2) and absorption coefficient (β) of the samples. The value of the third-order nonlinear susceptibility was presented by nonlinear refractive or absorptive behavior of phosphate glasses for proper utilization in nonlinear optical devices. Based on the measurement, the positive sign of the NLR index shows a self-focusing phenomenon. The figures of merit for each sample were calculated to judge the potential of phosphate glasses for application in optical switching.展开更多
Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises ...Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb--Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices.展开更多
A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing the bistable behavior of the double coupling optical fiber ring resonator was proposed and investigated. The switch-off or swi...A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing the bistable behavior of the double coupling optical fiber ring resonator was proposed and investigated. The switch-off or switch-on power decreases with an increase in the nonlinear refractive index n2 (m2/W), and the dependence of swith-off or switch-on power on the nonlinear refractive index was analyzed numerically. Simulation results showed that the switch-off power and switch-on power (in dBW) decreased linearly with loglo (n2) in a 100-m-length fiber ring resonator, when n2 changed from 3.2 ×10^-20 m2/W to 2.5 × 10^-17 m2/W or nearly n2 = 3.2 × 10^-20 m2/W. These mean that high accuracy as well as large-scale nonlinear refractive index measurement can be achieved by the proposed approach.展开更多
In this paper the results from investigations of the nonlinear refractive index and nonlinear absorption coefficient of Bromophenol Blue using the Z-scan technique with a continuous wave laser beam at wavelengths 488 ...In this paper the results from investigations of the nonlinear refractive index and nonlinear absorption coefficient of Bromophenol Blue using the Z-scan technique with a continuous wave laser beam at wavelengths 488 nm and 514 nm are presented. It was observed that the material exhibited reverse saturation absorption and self defocusing behavior. It was found that the increase in solution concentration resulted in linear increase of the nonlinear refractive index. A pump and probe technique was used to obtain the absorption spectrum of triplet state. Furthermore the nonlinear absorption effect was used to demonstrate all optical switching.展开更多
We have investigated third order nonlinear optical properties and spectral characteristics of methylene blue dye in both polymer and liquid mixtures. The spectral characteristics of the dye is studied by recording the...We have investigated third order nonlinear optical properties and spectral characteristics of methylene blue dye in both polymer and liquid mixtures. The spectral characteristics of the dye is studied by recording the absorption and fluorescence spectra of the dye doped in poly(methylmethacrylate) modified with additive n-butyl acetate(nBA) and the dye in MMA and nBA (liquid mixture). The spectral results of the dye doped polymer rod are compared with dye in liquid Mixture. The nonlinear measurements of the dye in liquid and polymer medium were performed using CW He-Ne laser of wavelength 632.8 nm by employing z-scan technique. The dye methylene blue showed a negative nonlinear refractive index.展开更多
We report results from the investigation of the nonlinear refractive index and nonlinear absorption coefficient of {(1Z)-[4-(Dimethylamino)phenyl]methylene} 4-nitrobenzocarboxy hydrazone mono-hydrate (DMPM4NBCHM) solu...We report results from the investigation of the nonlinear refractive index and nonlinear absorption coefficient of {(1Z)-[4-(Dimethylamino)phenyl]methylene} 4-nitrobenzocarboxy hydrazone mono-hydrate (DMPM4NBCHM) solution using Z-scan technique with a continuous wave (CW) Argon ion laser. The results show that this type of organic material has a large nonlinear absorption and nonlinear refractive index at 488 nm and 514 nm. The origin of the nonlinear effects was discussed. We demonstrate that the light induced nonlinear refractive index variation, leads to limiting effect. The results indicated that DMPM4NBCHM could be promising candidates for application on nonlinear photonic devices and optical limiters.展开更多
The nonlinearity of functionalized and nonfunctionlaized graphene as well as gold nanorods were investigated using the Z-scan system with an Ar+ laser beam tuned at a wavelength of 514 nm in a CW (continuous wave) ...The nonlinearity of functionalized and nonfunctionlaized graphene as well as gold nanorods were investigated using the Z-scan system with an Ar+ laser beam tuned at a wavelength of 514 nm in a CW (continuous wave) regime that was in resonance with AuNRs (gold nanorods). Z-scan experimental study indicated that functionalized graphene had a negative nonlinear refraction with self-defocusing performance. The result concluded that gold nanorods (average length was 36 ± 3 nm, and the average diameter was 12 ± 2 nm) enhance the thermal nonlinear properties of graphene oxide materials. Gold nanorods were proved to enhance the nonlinear absorption by 50%, and there was a large enhancement on the thermal nonlinear refraction and the thermo-optical coefficient (dn/dT). It was observed that the AuFG (functionalized graphene film with gold nanorods) presented a large thermal nonlinear refraction. The value of the nonlinear refraction (nl') of FG and AuFG samples was shifted from -0.533 x 10.7 cm2/W to -2.92 x 10-7 cm2/W. There was a large enhancement in thermal refraction value that was about five factors larger than the nonlinear refraction of the host material (FG) and much larger (4 orders of magnitude) than that for AuNRs.展开更多
基金Founded by the National Natural Science Foundation of China (Nos.50672107,60607014)
文摘The method of conventional glass melting is used to study the glass formation region of Bi2O3-B2O3-TiO2-La2O3 system. The instrument of Differential Scanning Calorimeter (DSC) is used to research the glass stability. Raman spectra and IR spectra are used to speculate on the structure of glasses. The refractive index of glass is measured by prism coupler. With increase of Bi2O3, the glass stability, the amount of [BiO3] group and boron-oxygen loops decrease, while the content of B-O- bond, refractive index and nonlinear refractive index increase.
文摘The nonlinear refractive index and absorption coefficient of single\|shell semiconductor carbon nanotubes(CN s ) are calculated based on the two\|band approximation and Genkin\|Mednis approach. The results of nonlinear refractive index and absorption coefficient reach the order of 10 -8 and 10 -4 cm 2\5W -1 separately, which indicates that CN s have wonderful nonlinear optical properties. Taking into account the temperature effect and overlapping of σ and π orbits, the effect of relaxation term and chiral angle is discussed. The results show that the smaller the relaxation term, the larger the nonlinear absorption coefficient and refractive index. At the same time, CN s with different chiral angles have different results due to their different energy gap.
基金Supported by the Deanship of Scientific Research of University of Dammam under Grant No 2015134
文摘In the framework of effective mass approximation, we theoretically investigate the electronic structure of the Si δ-doped InAIN/GaN single quantum well by solving numerically the coupled equations Schrodinger-Poisson self-consistently. The linear, nonlinear optical absorption coefficients and relative refractive index changes are calculated as functions of the doping concentration and its thickness. The obtained results show that the position and the amplitude of the linear and total optical absorption coefficients and the refractive index changes can be modified by varying the doping concentration and its thickness. In addition, it is found that the maximum of the optical absorption can be red-shifted or blue-shifted by varying the doping concentration. The obtained results are important for the design of various electronic components such as high-power FETs and infrared photonic devices.
文摘By use of the Keldysh non-equilibrium Green’s-function methods, the third harmonic susceptibilities of two polyaniline families, PANI-HCl and PANI-H 3PO 4, are calculated [ x (3) ( ω )≈10 -12 esu]. It was found that the third harmonic susceptibility of polyaniline strongly depends on the delocalization of the electrons. The refractive indices n ( λ =589 nm) of PANI-HCl and PANI-H 3PO 4 are calculated by use of three common methods (the Lorentz-Lorentz theoretical model, the Gladstone-Dale group contribution and the Vogel group correlation) based on group contributions to molar refraction. The calculated n values are varied from 1.31 to 1.42 for PANI-HCl and 1.36 to 1.45 for PANI-H 3PO 4.
文摘An experimental study of the nonlinear changes in refractive index and transmission coefficient of single-crystal ZnSe:Fe2+, fabricated through the Fe-diffusion method, at long-pulse (~300 ns), sub-mJ, 2.94-mm Z-scan probing is reported. As well, a theoretical model based on the generalized Avizonis-Grotbeck equations is developed and applied for straightforward fitting of the open- and closed-aperture Z-scans, obtained for ZnSe:Fe2+ with different Fe2+ centers concentrations. The modeling results reveal that the contributions in the absorption and refractive index nonlinearities of ZnSe:Fe2+ are “common” resonant-absorption saturation (the minor part) and pulse-induced heating of the samples (the major part), which are strongly dependent on Fe2+ concentrations. Large values of the index change (>~10-3) and partial resonant-absorption bleaching (limited by ~50%), both produced via the thermal effect mainly, are the features of the ZnSe:Fe2+ samples inherent to this type of excitation.
文摘Nonlinear properties of two different crude oils from west-south Iran reservoirs have been investigated using the single beam Z-scan technique. The nonlinear refractive indices of the samples were measured by use of diode laser in the CW regime and at the wavelength 660 nm. The experiment results showed that the samples have large and negative refractive index nonlinear refraction coefficient. These results showed that the crude oil has significant nonlinear properties and it could be a candidate for photonic and nonlinear optical devices and also this information can be used in petroleum science and oceanology and etc.
基金supported by the National Natural Science Foundation of China(Grant No.21975062)Hebei Province Outstanding Youth Fund(Grant No.E2020201003)+1 种基金Science and Technology Project of Hebei Education Department(Grant Nos.ZD2022156,BJ2020020)Key Projects of Scientific Research and Cultivation Fund of Baoding University(Grant No.2022Z01).
文摘Nonlinear optical(NLO)materials play an increasingly important role in laser technology.Birefringence is one of the most important parameters for NLO materials to realize angle phase-matching conditions.In comparison with other desirable optical properties,the availability of birefringence and refractive index dispersion is especially problematic owing to the strict requirements for single crystals.In this review,we described how to obtain the refractive index and birefringence of NLO materials from crystals sub-millimeters to centimeters in size.Espe-cially,recently developed methods including the minimum deflection angle method,auto-collimation method,prism coupling method,oil immersion technique,interference color method,and theoretical calculation(DFT)for rapid assessment of birefringence are summarized,the contents of which are mainly focused on the principles and typical applications,together with the advantages and drawbacks.In addition,representative examples of bire-fringent measurements were presented.The purpose of this work is to provide a useful perspective on the characterization of birefringence for NLO materials.It is hoped that this review can give a clear description of the birefringence measurements and accelerate the discovery of new NLO crystals.
基金supported in part by the National Natural Science Foundation of China (No. 61178007, No. 61308034, and No. 51302285)the Science and Technology Commission of Shanghai Municipality (No. 12ZR1451800)+3 种基金the Excellent Academic Leader of Shanghai (No. 10XD1404600)the External Cooperation Program of BIC, Chinese Academy of Sciences (No. 181231KYSB20130007)the National 10000-Talent Program and the CAS 100-Talent Program for financial supportsupported by the ERC Grant SEMANTICS. W. J. B. is supported in part by Science Foundation Ireland (No. 12/IA/1306)
文摘Liquid-phase-exfoliation technology was utilized to prepare layered MoS2, WS2, and MoSe2 nanosheets in cyclohexylpyrrolidone. The nonlinear optical response of these nanosheets in dispersions was investigated by observing spatial self-phase modulation(SSPM) using a 488 nm continuous wave laser beam. The diffraction ring patterns of SSPM were found to be distorted along the vertical direction right after the laser traversing the nanosheet dispersions. The nonlinear refractive index of the three transition metal dichalcogenides dispersions n2 was measured to be 10-7cm2W-1, and the third-order nonlinear susceptibility χ(3)10-9 esu. The relative change of effective nonlinear refractive index Δn2e∕n(2e) of the MoS2, WS2, and MoSe2 dispersions can be modulated 0.012–0.240, 0.029–0.154, and 0.091–0.304, respectively, by changing the incident intensities. Our experimental results imply novel potential application of two-dimensional transition metal dichalcogenides in nonlinear phase modulation devices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 19834030 and 50533010).
文摘This paper reports that the nonlinear refractive index of a novel organic optical storage film doped azodiphenylamine polymer is measured by using the Z-scan technique. The nonlinear refractive index up to 3.7× 10^-6 cm^2/W induced by thermo-optical effect is obtained. It indicates that the sample has excellent optical non- linear properties. The physical mechanism of the great nonlinear optical effect is analysed and the optical conjugate characteristic is also discussed with degenerate four-wave-mixing. The phase conjugate wave diffracted from the formative refractive index grating in the sample is acquired and its equivalent reflectivity reaches about 22%. On this basis, the reflective wave phase-conjugated mirror system was designed, and the image aberration experienced in propagation in the storage experiment is corrected by using the system.
文摘A thermal lens technique is adopted using a single modulated continuous wave (cw) 532-nm laser beam to evaluate the nonlinear refractive index n2, and the thermo-optic coefficient dn/dT, in polymer Poly (1-naphthyl methacrylate) (P-1-NM) dissolved in chloroform, tetrahydrofuran (THF), and dimethyl sulfoxide (DMSO) solvents. The results are compared with Z-scan and diffraction ring techniques. The comparison reveals the effectiveness and the simplicity of the TTL modulation technique. The physical origin is discussed for the obtained results.
文摘The Z-scan technique is a simple and effective tool for determining nonlinear optical properties of materials. This technique is utilized in meas-urement of urea and uric acid in blood. The nonlinear refractive index of urea and uric acid are found to vary linearly with concentration. Hence by calculating the nonlinear refractive index it is possible to measure their concentra-tion in the sample. The results of this method are found to be in good agreement with the conventional colorimetric method.
基金Project supported by the Ministry of Higher Education(Grant Nos.1-11-08-664FR/F1 and 01-0410-861FR)
文摘The nonlinear optical properties of a phosphate vitreous system [(ZnO)x-(MgO)30-x-(P2O5)70], where x=8, 10, 15, 18, and 20 mol% synthesized through the melt-quenching technique have been investigated by using the Z-scan technique. In the experiment, a continuous-wave laser with a wavelength of 405 nm was utilized to determine the sign and value of the nonlinear refractive (NLR) index and the absorption coefficient with closed and opened apertures of the Z-scan setup. The NLR index was found to increase with the ZnO concentration in the glass samples by an order of 10-10 cm2·W-1. The real and imaginary parts of the third-order nonlinear susceptibility were calculated by referring to the NLR index (n2) and absorption coefficient (β) of the samples. The value of the third-order nonlinear susceptibility was presented by nonlinear refractive or absorptive behavior of phosphate glasses for proper utilization in nonlinear optical devices. Based on the measurement, the positive sign of the NLR index shows a self-focusing phenomenon. The figures of merit for each sample were calculated to judge the potential of phosphate glasses for application in optical switching.
基金Project supported by the National Key Basic Research Program of China(Grant No.2012CB722703)the National Natural Science Foundation of China(Grant No.61377061)+2 种基金the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province,China(Grant No.pd2013092)the Program for Innovative Research Team of Ningbo City,China(Grant No.2009B217)the K.C.Wong Magna Fund in Ningbo University,China
文摘Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb--Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices.
文摘A novel approach for measuring the nonlinear refractive index of an optical fiber utlizing the bistable behavior of the double coupling optical fiber ring resonator was proposed and investigated. The switch-off or switch-on power decreases with an increase in the nonlinear refractive index n2 (m2/W), and the dependence of swith-off or switch-on power on the nonlinear refractive index was analyzed numerically. Simulation results showed that the switch-off power and switch-on power (in dBW) decreased linearly with loglo (n2) in a 100-m-length fiber ring resonator, when n2 changed from 3.2 ×10^-20 m2/W to 2.5 × 10^-17 m2/W or nearly n2 = 3.2 × 10^-20 m2/W. These mean that high accuracy as well as large-scale nonlinear refractive index measurement can be achieved by the proposed approach.
文摘In this paper the results from investigations of the nonlinear refractive index and nonlinear absorption coefficient of Bromophenol Blue using the Z-scan technique with a continuous wave laser beam at wavelengths 488 nm and 514 nm are presented. It was observed that the material exhibited reverse saturation absorption and self defocusing behavior. It was found that the increase in solution concentration resulted in linear increase of the nonlinear refractive index. A pump and probe technique was used to obtain the absorption spectrum of triplet state. Furthermore the nonlinear absorption effect was used to demonstrate all optical switching.
文摘We have investigated third order nonlinear optical properties and spectral characteristics of methylene blue dye in both polymer and liquid mixtures. The spectral characteristics of the dye is studied by recording the absorption and fluorescence spectra of the dye doped in poly(methylmethacrylate) modified with additive n-butyl acetate(nBA) and the dye in MMA and nBA (liquid mixture). The spectral results of the dye doped polymer rod are compared with dye in liquid Mixture. The nonlinear measurements of the dye in liquid and polymer medium were performed using CW He-Ne laser of wavelength 632.8 nm by employing z-scan technique. The dye methylene blue showed a negative nonlinear refractive index.
文摘We report results from the investigation of the nonlinear refractive index and nonlinear absorption coefficient of {(1Z)-[4-(Dimethylamino)phenyl]methylene} 4-nitrobenzocarboxy hydrazone mono-hydrate (DMPM4NBCHM) solution using Z-scan technique with a continuous wave (CW) Argon ion laser. The results show that this type of organic material has a large nonlinear absorption and nonlinear refractive index at 488 nm and 514 nm. The origin of the nonlinear effects was discussed. We demonstrate that the light induced nonlinear refractive index variation, leads to limiting effect. The results indicated that DMPM4NBCHM could be promising candidates for application on nonlinear photonic devices and optical limiters.
文摘The nonlinearity of functionalized and nonfunctionlaized graphene as well as gold nanorods were investigated using the Z-scan system with an Ar+ laser beam tuned at a wavelength of 514 nm in a CW (continuous wave) regime that was in resonance with AuNRs (gold nanorods). Z-scan experimental study indicated that functionalized graphene had a negative nonlinear refraction with self-defocusing performance. The result concluded that gold nanorods (average length was 36 ± 3 nm, and the average diameter was 12 ± 2 nm) enhance the thermal nonlinear properties of graphene oxide materials. Gold nanorods were proved to enhance the nonlinear absorption by 50%, and there was a large enhancement on the thermal nonlinear refraction and the thermo-optical coefficient (dn/dT). It was observed that the AuFG (functionalized graphene film with gold nanorods) presented a large thermal nonlinear refraction. The value of the nonlinear refraction (nl') of FG and AuFG samples was shifted from -0.533 x 10.7 cm2/W to -2.92 x 10-7 cm2/W. There was a large enhancement in thermal refraction value that was about five factors larger than the nonlinear refraction of the host material (FG) and much larger (4 orders of magnitude) than that for AuNRs.