For bottom water reservoir and the reservoir with a thick oil formation, there exists partial penetration completion well and when the well products the oil flow in the porous media takes on spherical percolation. The...For bottom water reservoir and the reservoir with a thick oil formation, there exists partial penetration completion well and when the well products the oil flow in the porous media takes on spherical percolation. The nonlinear spheri-cal flow equation with the quadratic gradient term is deduced in detail based on the mass conservation principle, and then it is found that the linear percolation is the approximation and simplification of nonlinear percolation. The nonlinear spherical percolation physical and mathematical model under different external boundaries is established, considering the ef-fect of wellbore storage. By variable substitu-tion, the flow equation is linearized, then the Laplace space analytic solution under different external boundaries is obtained and the real space solution is also gotten by use of the nu-merical inversion, so the pressure and the pressure derivative bi-logarithmic nonlinear spherical percolation type curves are drawn up at last. The characteristics of the nonlinear spherical percolation are analyzed, and it is found that the new nonlinear percolation type curves are evidently different from linear per-colation type curves in shape and characteris-tics, the pressure curve and pressure derivative curve of nonlinear percolation deviate from those of linear percolation. The theoretical off-set of the pressure and the pressure derivative between the linear and the nonlinear solution are analyzed, and it is also found that the in-fluence of the quadratic pressure gradient is very distinct, especially for the low permeabil-ity and heavy oil reservoirs. The influence of the non-linear term upon the spreading of pressure is very distinct on the process of percolation, and the nonlinear percolation law stands for the actual oil percolation law in res-ervoir, therefore the research on nonlinear per-colation theory should be strengthened and reinforced.展开更多
The addition of graphite powder in conventional asphalt mixture can produced asp halt concrete with excellent electrical performance. Percolation theor y was employed to discuss the relation between the conductivity a...The addition of graphite powder in conventional asphalt mixture can produced asp halt concrete with excellent electrical performance. Percolation theor y was employed to discuss the relation between the conductivity and graphite con tent of graphite-modified asphalt concrete. It was found that the results of pe rcolation model are consistent with experimental values. The percolation thresho ld of graphite-modified asphalt concrete is 10.94% graphite content account for the total volume of the binder phase consisting of asphalt and graphite. The cr itical exponent is 3.16, beyond the range of 1.6-2.1 for the standard lattice c ontinuous percolation problem. Its reason is that the tunnel conduction mec hanism originates near the critical percent content, which causes this system to be not universal. Tunnel mechanism is demonstrated by the nonlinear voltage-cu rrent characteristic near percolation threshold.The percolation model is able to well predict the formation and development of conductive network in graphite- modified asphalt concrete.展开更多
Making use of modern nonlinear physics theory and earthquake focus theory, combined with seismicity characteristics, the percolation model of earthquake activity is given in this paper. We take the seismogenic process...Making use of modern nonlinear physics theory and earthquake focus theory, combined with seismicity characteristics, the percolation model of earthquake activity is given in this paper. We take the seismogenic process of alarge earthquake as a phase transition process of percolation and apply the renormalization method to phase transition of percolation. The critical property of the system, which is like percolation probability exponential andcorrelative length exponential, etc, can be calculated under the fixed point as which in the renormalization transformation infinite correlative length in percolation phase transition is taken. The percolation phase transition process of two large earthquakes, which are Haicheng and Tangshan event occurred in 1975 and 1976 respectively, hasbeen discussed by means of seismicity data before and after two shocks.展开更多
According to the simulation of nitrogen sorption process in porous media with three-dimensional network model, and the analysis for such a process with percolation theory, a new method is proposed to determine a pore ...According to the simulation of nitrogen sorption process in porous media with three-dimensional network model, and the analysis for such a process with percolation theory, a new method is proposed to determine a pore structure parameter--mean coordination number of pore network, which represents the connectivity among a great number of pores. Here the 'chamber-throat' model and the Weibull distribution are used to describe the pore geometry and the pore size distribution respectively. This method is based on the scaling law of percolation theory after both effects of sorption thermodynamics and pore size on the sorption hysteresis loops are considered. The results show that it is an effective procedure to calculate the mean coordination number for micro- and meso-porous media.展开更多
High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to ...High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to the breakdown characteristic.In this work,a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up,and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation.It is found that all degradation factors,such as trap generation rate time exponent m,Weibull slope β and percolation factor s,each could be expressed as a function of trap density time exponent α.Based on the percolation relation and power law lifetime projection,a temperature related trap generation model is proposed.The validity of this model is confirmed by comparing with experiment results.For other device and material conditions,the percolation relation provides a new way to study the relationship between trap generation and lifetime projection.展开更多
We study the percolation transition in a one-species cluster aggregation network model, in which the parameter α describes the suppression on the cluster sizes. It is found that the model can exhibit four types of pe...We study the percolation transition in a one-species cluster aggregation network model, in which the parameter α describes the suppression on the cluster sizes. It is found that the model can exhibit four types of percolation transitions, two continuous percolation transitions and two discontinuous ones. Continuous and discontinuous percolation transitions can be distinguished from each other by the largest single jump. Two types of continuous percolation transitions show different behaviors in the time gap. Two types of discontinuous percolation transitions are different in the time evolution of the cluster size distribution. Moreover, we also find that the time gap may also be a measure to distinguish different discontinuous percolations in this model.展开更多
Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, ...Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, the number of constraints experienced by an atom equals the number of degrees of freedom in three dimensions. Hence, at this composition, the network changes from a floppy phase to a rigid phase, and rigidity starts to percolate. In this work, we use reverse Monte Carlo (RMC) modeling to model the structure of Ge0.20Se0.80 glass by simulating its experimental total atomic pair distribution function (PDF) obtained via high energy synchrotron radiation. A three-dimensional configuration of 2836 atoms was obtained, from which we extracted the partial atomic pair distribution functions associated with Ge-Ge, Ge-Se and Se-Se real space correlations that are hard to extract experimentally from total scattering methods. Bond angle distributions, coordination numbers, mean coordination numbers and the number of floppy modes were also extracted and discussed. More structural insights about network topology at this composition were illustrated. The results indicate that in Ge0.20Se0.80 glass, Ge atoms break up and cross-link the Se chain structure, and form structural units that are four-fold coordinated (the GeSe4 tetrahedra). These tetrahedra form the basic building block and are connected via shared Se atoms or short Se chains. The extent of the intermediate ranged oscillations in real space (as extracted from the width of the first sharp diffraction peak) was found to be around 19.6 ?. The bonding schemes in this glass are consistent with the so-called “8-N” rule and can be interpreted in terms of a chemically ordered network model.展开更多
Percolation theory deals with the numbers and properties of the clusters formed in the different occupation probability. In this Paper, we study the calculation method of small clusters. We calcu-lated the small clust...Percolation theory deals with the numbers and properties of the clusters formed in the different occupation probability. In this Paper, we study the calculation method of small clusters. We calcu-lated the small cluster density of 1, 2 and 3 in the percolation model with the exact method and the numerical method. The results of the two methods are very close, which can be verified by each other. We find that the cluster density of all three kinds of small clusters reaches the highest value when the occupation probability is between 0.1 and 0.2. It is very difficult to get the analytical formula for the exact method when the cluster area is relatively large (such as the area is more than 50), so we can get the density value of the cluster by numerical method. We find that the time required calculating the cluster density is proportional to the percolation area, which is indepen-dent of the cluster size and the occupation probability.展开更多
The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathema...The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.展开更多
The pore configuration in porous medium is assumed to be the randomly distributed cube-like particles which can overlap each other in the periodic cubic domain, and the impact of particle characteristics on the percol...The pore configuration in porous medium is assumed to be the randomly distributed cube-like particles which can overlap each other in the periodic cubic domain, and the impact of particle characteristics on the percolation property of these cube-like particle packing systems is analyzed.Firstly, by combining the percolation models and finite-size scaling analysis, three numerical parameters(i.e., percolation transition width △L, local percolation threshold ψ_c(L), and correlation length exponent v) for the cube-like particle systems with shape parameter s in[1.0, +∞] are derived successively. Then, based on the relation between the percolation thresholdψ_c in infinite space and the local percolation threshold ψ_c(L), the corresponding ψ_c with s in[1.0, +∞] are further determined. It is shown from the study that the characteristics of cube-like particles have significant influence on the global percolation threshold ψ_c of the particle packing systems. As the parameter s increases from 1.0 to +∞, the percolation threshold ψ_c will go down persistently. When the surface of cube-like particles is cubical and spherical, respectively, the minimum and maximum thresholds ψ_c,min and ψ_c,max are obtained.展开更多
The two-parameter lognormal distribution is a variant of the normal distribution and the three-parameter lognormal distribution is an extension of the two-parameter lognormal distribution by introducing a location par...The two-parameter lognormal distribution is a variant of the normal distribution and the three-parameter lognormal distribution is an extension of the two-parameter lognormal distribution by introducing a location parameter. The Q-Q plot of the three-parameter lognormal distribution is widely used. To obtain the Q-Q plot one needs to iteratively try different values of the shape parameter and subjectively judge the linearity of the Q-Q plot. In this paper,a mathematical method was proposed to determine the value of the shape parameter so as to simplify the generation of the Q-Q plot. Then a new probability plot was proposed,which was more easily obtained and provided more accurate parameter estimates than the Q-Q plot. These are illustrated by three realworld examples.展开更多
The energetic disorder𝜎describes the energy state distribution in organic semiconducting materials.In organic solar cells(OSCs),energetic disorder is an important parameter for evaluating the charge transport ...The energetic disorder𝜎describes the energy state distribution in organic semiconducting materials.In organic solar cells(OSCs),energetic disorder is an important parameter for evaluating the charge transport behavior,and it is strongly correlated with the device performance.Thus far,a widely used approach for extracting energetic disorder values in OSCs is the Gaussian disorder model(GDM),in which the disorder values can be extracted by fitting the slope of lnμ∼1-T2,where𝜇is the charge mobility and𝑇is the temperature.Herein,we demonstrate the potential of the percolation approach to evaluate the energetic disorder values in OSCs and compare them with the data obtained using the GDM approach.Two typical non-fullerene acceptor(NFA)-based bulk heterojunction(BHJ)films,with PTB7-Th:ITIC and PM6:Y6,were selected as the model systems.When the percolation models were adopted in the two BHJ films,the energetic disorder values extracted from the Grünewald/Thomas and Nenashev percolation models gave similar results for electron transport in the PTB7-Th:ITIC and PM6:Y6 BHJ films.This work successfully demonstrates the feasibility of microresistance analysis in BHJ systems and the application potential of the percolation model for extracting energetic disorders in OSCs.展开更多
Based on the consistency-viscoplastic constitutive model,the static William-Warnke model with three-parameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that co...Based on the consistency-viscoplastic constitutive model,the static William-Warnke model with three-parameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that considers the effect of strain rates. Then,the tangent modulus of the consistency viscoplastic model is introduced and an implicit backward Elure iterative algorithm is developed. Comparisons between the numerical simulations and experimental data show that the consistency model properly provides the uniaxial and biaxial dynamic behaviors of concrete. To study the effect of strain rates on the dynamic response of concrete structures,the proposed model is used in the analysis of the dynamic response of a simply-supported beam and the results show that the strain rate has a significant effect on the displacement and stress magnitudes and distributions. Finally,the seismic responses of a 278 m high arch dam are obtained and compared by using the linear elastic model,as well as rate-independent and rate-dependent William-Warnke three-parameter models. The results indicate that the strain rate affects the first principal stresses,and the maximal equivalent viscoplastic strain rate of the arch dam. Numerical calculations and analyses reveal that considering the strain rate is important in the safety assessments of arch dams located in seismically active areas.展开更多
This paper focused on the evolution over time of elasticity of the cement paste during the hydration, e g, Young's modulus and Poisson's ration, by the proposed homogenization method combined the percolation algorit...This paper focused on the evolution over time of elasticity of the cement paste during the hydration, e g, Young's modulus and Poisson's ration, by the proposed homogenization method combined the percolation algorithm with individual phase intrinsic elasticity. A cement paste development model, named CEMHYD3D, was used to establish an accurate microstructure. The modelling results are in good agreement with the experimental data and other numerical results available in the open literatm'e. The suitable homogeneous scheme, applied to each level, should be carefully chosen to result in a realistic prediction. The percolation concept should aims to correctly predict the elasticity for cement paste at very early age, especially under low w/c ratios.展开更多
The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for m...The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data collected March 2007-October 2009. Source areas included 1) a golf course that received applied wastewater, 2) urban areas, highway, and some agricultural lands, and 3) a cave spring draining a second golf course along with agricultural and forested areas, including a substantial contribution of subsurface water via karst connectivity. SWAT predictions of mean monthly TP loadings at the first two source outlets were deemed reasonable. However, the predictions at the cave spring outlet were somewhat poorer, likely due to diffuse variable groundwater flow from an unknown drainage area larger than the actual surface watershed, for which monthly subsurface flow was represented as a point source during simulations. Further testing of the SWAT model to predict monthly TP loadings at the R-E, modeled as a completely mixed system, resulted in their over-predictions most of the months, except when high lake water levels occurred. The mean monthly and annual flows were calibrated to acceptable limits with the exception of flow over-prediction when lake levels were low and surface water from tributaries disappeared into karst connections. The discrepancy in TP load predictions was attributed primarily to the use of limited monthly TP data collected during baseflow in the embayment. However, for the 22-month period, over-prediction of mean monthly TP load (34.6 kg/mo) by 13% compared to measured load (30.6 kg/mo) in the embayment was deemed acceptable. Simulated results showed a 42% reduction in TP load due to settling in the embayment.展开更多
文摘For bottom water reservoir and the reservoir with a thick oil formation, there exists partial penetration completion well and when the well products the oil flow in the porous media takes on spherical percolation. The nonlinear spheri-cal flow equation with the quadratic gradient term is deduced in detail based on the mass conservation principle, and then it is found that the linear percolation is the approximation and simplification of nonlinear percolation. The nonlinear spherical percolation physical and mathematical model under different external boundaries is established, considering the ef-fect of wellbore storage. By variable substitu-tion, the flow equation is linearized, then the Laplace space analytic solution under different external boundaries is obtained and the real space solution is also gotten by use of the nu-merical inversion, so the pressure and the pressure derivative bi-logarithmic nonlinear spherical percolation type curves are drawn up at last. The characteristics of the nonlinear spherical percolation are analyzed, and it is found that the new nonlinear percolation type curves are evidently different from linear per-colation type curves in shape and characteris-tics, the pressure curve and pressure derivative curve of nonlinear percolation deviate from those of linear percolation. The theoretical off-set of the pressure and the pressure derivative between the linear and the nonlinear solution are analyzed, and it is also found that the in-fluence of the quadratic pressure gradient is very distinct, especially for the low permeabil-ity and heavy oil reservoirs. The influence of the non-linear term upon the spreading of pressure is very distinct on the process of percolation, and the nonlinear percolation law stands for the actual oil percolation law in res-ervoir, therefore the research on nonlinear per-colation theory should be strengthened and reinforced.
基金Funded by the Outstanding Youth Foundation of Hubei Province of China (No.2004ABB019)
文摘The addition of graphite powder in conventional asphalt mixture can produced asp halt concrete with excellent electrical performance. Percolation theor y was employed to discuss the relation between the conductivity and graphite con tent of graphite-modified asphalt concrete. It was found that the results of pe rcolation model are consistent with experimental values. The percolation thresho ld of graphite-modified asphalt concrete is 10.94% graphite content account for the total volume of the binder phase consisting of asphalt and graphite. The cr itical exponent is 3.16, beyond the range of 1.6-2.1 for the standard lattice c ontinuous percolation problem. Its reason is that the tunnel conduction mec hanism originates near the critical percent content, which causes this system to be not universal. Tunnel mechanism is demonstrated by the nonlinear voltage-cu rrent characteristic near percolation threshold.The percolation model is able to well predict the formation and development of conductive network in graphite- modified asphalt concrete.
文摘Making use of modern nonlinear physics theory and earthquake focus theory, combined with seismicity characteristics, the percolation model of earthquake activity is given in this paper. We take the seismogenic process of alarge earthquake as a phase transition process of percolation and apply the renormalization method to phase transition of percolation. The critical property of the system, which is like percolation probability exponential andcorrelative length exponential, etc, can be calculated under the fixed point as which in the renormalization transformation infinite correlative length in percolation phase transition is taken. The percolation phase transition process of two large earthquakes, which are Haicheng and Tangshan event occurred in 1975 and 1976 respectively, hasbeen discussed by means of seismicity data before and after two shocks.
基金Supported by the National Natural Science Foundation of China(No.29776038).
文摘According to the simulation of nitrogen sorption process in porous media with three-dimensional network model, and the analysis for such a process with percolation theory, a new method is proposed to determine a pore structure parameter--mean coordination number of pore network, which represents the connectivity among a great number of pores. Here the 'chamber-throat' model and the Weibull distribution are used to describe the pore geometry and the pore size distribution respectively. This method is based on the scaling law of percolation theory after both effects of sorption thermodynamics and pore size on the sorption hysteresis loops are considered. The results show that it is an effective procedure to calculate the mean coordination number for micro- and meso-porous media.
基金supported by the National High Technology Research and Development Program of China(Grant No.SS2015AA010601)the National Natural Science Foundation of China(Grant Nos.61176091 and 61306129)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Micro Electronics of Chinese Academy of Sciences
文摘High-k metal gate stacks are being used to suppress the gate leakage due to tunneling for sub-45 nm technology nodes.The reliability of thin dielectric films becomes a limitation to device manufacturing,especially to the breakdown characteristic.In this work,a breakdown simulator based on a percolation model and the kinetic Monte Carlo method is set up,and the intrinsic relation between time to breakdown and trap generation rate R is studied by TDDB simulation.It is found that all degradation factors,such as trap generation rate time exponent m,Weibull slope β and percolation factor s,each could be expressed as a function of trap density time exponent α.Based on the percolation relation and power law lifetime projection,a temperature related trap generation model is proposed.The validity of this model is confirmed by comparing with experiment results.For other device and material conditions,the percolation relation provides a new way to study the relationship between trap generation and lifetime projection.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11575036 and 11505016
文摘We study the percolation transition in a one-species cluster aggregation network model, in which the parameter α describes the suppression on the cluster sizes. It is found that the model can exhibit four types of percolation transitions, two continuous percolation transitions and two discontinuous ones. Continuous and discontinuous percolation transitions can be distinguished from each other by the largest single jump. Two types of continuous percolation transitions show different behaviors in the time gap. Two types of discontinuous percolation transitions are different in the time evolution of the cluster size distribution. Moreover, we also find that the time gap may also be a measure to distinguish different discontinuous percolations in this model.
文摘Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, the number of constraints experienced by an atom equals the number of degrees of freedom in three dimensions. Hence, at this composition, the network changes from a floppy phase to a rigid phase, and rigidity starts to percolate. In this work, we use reverse Monte Carlo (RMC) modeling to model the structure of Ge0.20Se0.80 glass by simulating its experimental total atomic pair distribution function (PDF) obtained via high energy synchrotron radiation. A three-dimensional configuration of 2836 atoms was obtained, from which we extracted the partial atomic pair distribution functions associated with Ge-Ge, Ge-Se and Se-Se real space correlations that are hard to extract experimentally from total scattering methods. Bond angle distributions, coordination numbers, mean coordination numbers and the number of floppy modes were also extracted and discussed. More structural insights about network topology at this composition were illustrated. The results indicate that in Ge0.20Se0.80 glass, Ge atoms break up and cross-link the Se chain structure, and form structural units that are four-fold coordinated (the GeSe4 tetrahedra). These tetrahedra form the basic building block and are connected via shared Se atoms or short Se chains. The extent of the intermediate ranged oscillations in real space (as extracted from the width of the first sharp diffraction peak) was found to be around 19.6 ?. The bonding schemes in this glass are consistent with the so-called “8-N” rule and can be interpreted in terms of a chemically ordered network model.
文摘Percolation theory deals with the numbers and properties of the clusters formed in the different occupation probability. In this Paper, we study the calculation method of small clusters. We calcu-lated the small cluster density of 1, 2 and 3 in the percolation model with the exact method and the numerical method. The results of the two methods are very close, which can be verified by each other. We find that the cluster density of all three kinds of small clusters reaches the highest value when the occupation probability is between 0.1 and 0.2. It is very difficult to get the analytical formula for the exact method when the cluster area is relatively large (such as the area is more than 50), so we can get the density value of the cluster by numerical method. We find that the time required calculating the cluster density is proportional to the percolation area, which is indepen-dent of the cluster size and the occupation probability.
基金Project supported by the National Program on Key Basic Research Project(973 Program)(No.2013CB228002)
文摘The nonlinear effects of unsteady multi-scale shale gas percolation,such as desorption,slippage,diffusion,pressure-dependent viscosity,and compressibility,are investigated by numerical simulation.A new general mathematical model of the problem is built,in which the Gaussian distribution is used to describe the inhomogeneous intrinsic permeability.Based on the Boltzmann transformation,an efficient semi-analytical method is proposed.The problem is then converted into a nonlinear equation in an integral form for the pressure field,and a related explicit iteration scheme is constructed by numerical discretization.The validation examples show that the proposed method has good convergence,and the simulation results also agree well with the results obtained from both numerical and actual data of two vertical fractured test wells in the literature.Desorption,slippage,and diffusion have significant influence on shale gas flows.The accuracy of the usual technique that the product of viscosity and compressibility is approximated as its value at the average formation pressure is examined.
基金financially supported by the National Natural Science Foundation of China (Grants 51878152 and 51461135001)the Ministry of Science and Technology of China "973 Project" (Grant 2015CB655102)
文摘The pore configuration in porous medium is assumed to be the randomly distributed cube-like particles which can overlap each other in the periodic cubic domain, and the impact of particle characteristics on the percolation property of these cube-like particle packing systems is analyzed.Firstly, by combining the percolation models and finite-size scaling analysis, three numerical parameters(i.e., percolation transition width △L, local percolation threshold ψ_c(L), and correlation length exponent v) for the cube-like particle systems with shape parameter s in[1.0, +∞] are derived successively. Then, based on the relation between the percolation thresholdψ_c in infinite space and the local percolation threshold ψ_c(L), the corresponding ψ_c with s in[1.0, +∞] are further determined. It is shown from the study that the characteristics of cube-like particles have significant influence on the global percolation threshold ψ_c of the particle packing systems. As the parameter s increases from 1.0 to +∞, the percolation threshold ψ_c will go down persistently. When the surface of cube-like particles is cubical and spherical, respectively, the minimum and maximum thresholds ψ_c,min and ψ_c,max are obtained.
基金National Natural Science Foundation of China(No.71371035)
文摘The two-parameter lognormal distribution is a variant of the normal distribution and the three-parameter lognormal distribution is an extension of the two-parameter lognormal distribution by introducing a location parameter. The Q-Q plot of the three-parameter lognormal distribution is widely used. To obtain the Q-Q plot one needs to iteratively try different values of the shape parameter and subjectively judge the linearity of the Q-Q plot. In this paper,a mathematical method was proposed to determine the value of the shape parameter so as to simplify the generation of the Q-Q plot. Then a new probability plot was proposed,which was more easily obtained and provided more accurate parameter estimates than the Q-Q plot. These are illustrated by three realworld examples.
基金the Major Program of Natural Sci-ence Foundation of Shandong Province(ZR2019ZD43)Natural Science Foundation of China(52073162)+1 种基金Shandong Provincial Natural Science Foundation(ZR202102220369)the Qilu Young Scholar Program of Shandong University.
文摘The energetic disorder𝜎describes the energy state distribution in organic semiconducting materials.In organic solar cells(OSCs),energetic disorder is an important parameter for evaluating the charge transport behavior,and it is strongly correlated with the device performance.Thus far,a widely used approach for extracting energetic disorder values in OSCs is the Gaussian disorder model(GDM),in which the disorder values can be extracted by fitting the slope of lnμ∼1-T2,where𝜇is the charge mobility and𝑇is the temperature.Herein,we demonstrate the potential of the percolation approach to evaluate the energetic disorder values in OSCs and compare them with the data obtained using the GDM approach.Two typical non-fullerene acceptor(NFA)-based bulk heterojunction(BHJ)films,with PTB7-Th:ITIC and PM6:Y6,were selected as the model systems.When the percolation models were adopted in the two BHJ films,the energetic disorder values extracted from the Grünewald/Thomas and Nenashev percolation models gave similar results for electron transport in the PTB7-Th:ITIC and PM6:Y6 BHJ films.This work successfully demonstrates the feasibility of microresistance analysis in BHJ systems and the application potential of the percolation model for extracting energetic disorders in OSCs.
基金Naitonal Natural Science Foundation of China Under Grant No.90815026Foundation of National Seismic Bureau Under Grant No.200808074
文摘Based on the consistency-viscoplastic constitutive model,the static William-Warnke model with three-parameters is modified and a consistency-viscoplastic William-Warnke model with three-parameters is developed that considers the effect of strain rates. Then,the tangent modulus of the consistency viscoplastic model is introduced and an implicit backward Elure iterative algorithm is developed. Comparisons between the numerical simulations and experimental data show that the consistency model properly provides the uniaxial and biaxial dynamic behaviors of concrete. To study the effect of strain rates on the dynamic response of concrete structures,the proposed model is used in the analysis of the dynamic response of a simply-supported beam and the results show that the strain rate has a significant effect on the displacement and stress magnitudes and distributions. Finally,the seismic responses of a 278 m high arch dam are obtained and compared by using the linear elastic model,as well as rate-independent and rate-dependent William-Warnke three-parameter models. The results indicate that the strain rate affects the first principal stresses,and the maximal equivalent viscoplastic strain rate of the arch dam. Numerical calculations and analyses reveal that considering the strain rate is important in the safety assessments of arch dams located in seismically active areas.
基金Funded by the National Natural Science Foundation of China(No.51279054)
文摘This paper focused on the evolution over time of elasticity of the cement paste during the hydration, e g, Young's modulus and Poisson's ration, by the proposed homogenization method combined the percolation algorithm with individual phase intrinsic elasticity. A cement paste development model, named CEMHYD3D, was used to establish an accurate microstructure. The modelling results are in good agreement with the experimental data and other numerical results available in the open literatm'e. The suitable homogeneous scheme, applied to each level, should be carefully chosen to result in a realistic prediction. The percolation concept should aims to correctly predict the elasticity for cement paste at very early age, especially under low w/c ratios.
文摘The SWAT model was used to predict total phosphorus (TP) loadings for a 1555-ha karst watershed—Chapel Branch Creek (CBC)—which drains to a lake via a reservoir-like embayment (R-E). The model was first tested for monthly streamflow predictions from tributaries draining three potential source areas as well as the downstream R-E, followed by TP loadings using data collected March 2007-October 2009. Source areas included 1) a golf course that received applied wastewater, 2) urban areas, highway, and some agricultural lands, and 3) a cave spring draining a second golf course along with agricultural and forested areas, including a substantial contribution of subsurface water via karst connectivity. SWAT predictions of mean monthly TP loadings at the first two source outlets were deemed reasonable. However, the predictions at the cave spring outlet were somewhat poorer, likely due to diffuse variable groundwater flow from an unknown drainage area larger than the actual surface watershed, for which monthly subsurface flow was represented as a point source during simulations. Further testing of the SWAT model to predict monthly TP loadings at the R-E, modeled as a completely mixed system, resulted in their over-predictions most of the months, except when high lake water levels occurred. The mean monthly and annual flows were calibrated to acceptable limits with the exception of flow over-prediction when lake levels were low and surface water from tributaries disappeared into karst connections. The discrepancy in TP load predictions was attributed primarily to the use of limited monthly TP data collected during baseflow in the embayment. However, for the 22-month period, over-prediction of mean monthly TP load (34.6 kg/mo) by 13% compared to measured load (30.6 kg/mo) in the embayment was deemed acceptable. Simulated results showed a 42% reduction in TP load due to settling in the embayment.