The heat transfer analysis was performed for an AC electric arc furnace (EAF). Heat losses by conduction, convection and radiation from outer surface, roof, bottom and electrodes of EAF were determined in detail. Some...The heat transfer analysis was performed for an AC electric arc furnace (EAF). Heat losses by conduction, convection and radiation from outer surface, roof, bottom and electrodes of EAF were determined in detail. Some suggestions about decreasing heat losses were presented.展开更多
For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mat...For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mathematical model by control capacity methodis built. At the same time, the measurement on the melted depth ofbottom electrode is conducted which verified the correctness of thebuilt mathematical model. On the base of verification, all kinds ofkey parameters are calculated through the application and a series ofresults are simulated. Finally, the optimum parameters are found andthe service life of bottom electrode is prolonged.展开更多
The author describes the fundamental laws of physics, the laws of thermal radiation of ionized and non-ionized gas volumes. Based on open laws, a modern theory of heat transfer and methods for calculating heat transfe...The author describes the fundamental laws of physics, the laws of thermal radiation of ionized and non-ionized gas volumes. Based on open laws, a modern theory of heat transfer and methods for calculating heat transfer in electric arc and flare metallurgical furnaces, furnaces of steam boilers, and combustion chambers of gas turbine plants of power plants have been developed. The use of scientific discovery makes it possible to create innovative electric arc steel-smelting furnaces, flare heating furnaces, and combustion chambers in which the consumption of electricity and fuel is reduced, productivity and service life are increased, and the amount of harmful emissions into the environment is reduced.展开更多
A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and t...A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and the calculated results of heat transfer, current density and shear stresses on the anode surface are used as boundary conditions in a model of molten bath. Then a two-dimensional time-dependent model is used to describe the flow field and electromagnetic phenomenon in the molten bath. Moreover, the effect of bottom electrode diameter on the circulation of molten bath is studied.展开更多
An arc model considering deviations from thermodynamic and chemical equilibrium has been developed in order to achieve a better understanding of the arc plasma close to material surfaces.The model is based on unified ...An arc model considering deviations from thermodynamic and chemical equilibrium has been developed in order to achieve a better understanding of the arc plasma close to material surfaces.The model is based on unified consideration of the thermionic tungsten cathode,the arc region and the flat anode made of copper.The heat transfer within the electrodes is coupled with the plasma through the energy fluxes onto the electrode boundaries.Electrical characteristics of an 8 mm long free-burning arc are presented along with findings from spectroscopic measurements of the plasma emission in atmospheric pressure argon.The arc current varied from 60 A up to 200 A,and the gas flow rate was set at 12 L/min(at atmospheric pressure,room temperature).展开更多
Results of analytically studied effect of electromagnetic blowing and the slag height on the arc efficiency are stated. An arc is blown from under an electrode toward the furnace walls under an electromagnetic force, ...Results of analytically studied effect of electromagnetic blowing and the slag height on the arc efficiency are stated. An arc is blown from under an electrode toward the furnace walls under an electromagnetic force, arc radiation on the wall and roof increase and effective output, absorbed by the metal decreases. EAF (electric arc steel melting furnace) with independently powered arcs, eliminating its electromagnetic blowing is proposed. When arcs are powered independently, its efficiency increases significantly, and specific energy consumption decreases.展开更多
文摘The heat transfer analysis was performed for an AC electric arc furnace (EAF). Heat losses by conduction, convection and radiation from outer surface, roof, bottom and electrodes of EAF were determined in detail. Some suggestions about decreasing heat losses were presented.
文摘For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mathematical model by control capacity methodis built. At the same time, the measurement on the melted depth ofbottom electrode is conducted which verified the correctness of thebuilt mathematical model. On the base of verification, all kinds ofkey parameters are calculated through the application and a series ofresults are simulated. Finally, the optimum parameters are found andthe service life of bottom electrode is prolonged.
文摘The author describes the fundamental laws of physics, the laws of thermal radiation of ionized and non-ionized gas volumes. Based on open laws, a modern theory of heat transfer and methods for calculating heat transfer in electric arc and flare metallurgical furnaces, furnaces of steam boilers, and combustion chambers of gas turbine plants of power plants have been developed. The use of scientific discovery makes it possible to create innovative electric arc steel-smelting furnaces, flare heating furnaces, and combustion chambers in which the consumption of electricity and fuel is reduced, productivity and service life are increased, and the amount of harmful emissions into the environment is reduced.
文摘A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and the calculated results of heat transfer, current density and shear stresses on the anode surface are used as boundary conditions in a model of molten bath. Then a two-dimensional time-dependent model is used to describe the flow field and electromagnetic phenomenon in the molten bath. Moreover, the effect of bottom electrode diameter on the circulation of molten bath is studied.
文摘An arc model considering deviations from thermodynamic and chemical equilibrium has been developed in order to achieve a better understanding of the arc plasma close to material surfaces.The model is based on unified consideration of the thermionic tungsten cathode,the arc region and the flat anode made of copper.The heat transfer within the electrodes is coupled with the plasma through the energy fluxes onto the electrode boundaries.Electrical characteristics of an 8 mm long free-burning arc are presented along with findings from spectroscopic measurements of the plasma emission in atmospheric pressure argon.The arc current varied from 60 A up to 200 A,and the gas flow rate was set at 12 L/min(at atmospheric pressure,room temperature).
文摘Results of analytically studied effect of electromagnetic blowing and the slag height on the arc efficiency are stated. An arc is blown from under an electrode toward the furnace walls under an electromagnetic force, arc radiation on the wall and roof increase and effective output, absorbed by the metal decreases. EAF (electric arc steel melting furnace) with independently powered arcs, eliminating its electromagnetic blowing is proposed. When arcs are powered independently, its efficiency increases significantly, and specific energy consumption decreases.