In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to...In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.展开更多
The three-phase separator is a critical component of high-rate anaerobic bioreactors due to its significant contribution in separation of biomass, wastewater, and biogas. However, its role in an anaerobic membrane bio...The three-phase separator is a critical component of high-rate anaerobic bioreactors due to its significant contribution in separation of biomass, wastewater, and biogas. However, its role in an anaerobic membrane bioreactor is still not clear. In this study, the distinction between an external anaerobic ceramic membrane bioreactor (EAnCMBR) unequipped (R1) and equipped (R2) with a three-phase separator was investigated in terms of treatment performance, membrane fouling, extracellular polymers of sludge, and microbial community structure. The results indicate that the COD removal efficiencies of Rl and R2 were 98.2%±0.4% and 98.1%±0.4%, respectively, but the start-up period of R2 was slightly delayed. Moreover, the membrane fouling rate of R2 (0.4 kPa/d) was higher than that of Rl (0.2 kPa/d). Interestingly, the methane leakage from R2 (0.1 L/d) was 20 times higher than that from Rl (0.005 L/d). The results demonstrate that the three-phase separator aggravated the membrane fouling rate and methane leakage in the EAnCMBR. Therefore, this study provides a novel perspective on the effects of a three-phase separator in an EAnCMBR.展开更多
Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for...Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.展开更多
Three-phase centrifuge was used to process oily sludge,and the requirement of mud,oil and water three-phase separation was satisfied through the optimization of parameters. The results showed that when the input quant...Three-phase centrifuge was used to process oily sludge,and the requirement of mud,oil and water three-phase separation was satisfied through the optimization of parameters. The results showed that when the input quantity was lower than 5 m^3/h,the optimal operation parameters of the three-phase centrifuge are shown as follows: the frequency of the main motor and vice motor was 33 and 30 Hz respectively,and the flocculant flow was 0. 7 m^3/h,while the oily sludge temperature was 55 ℃. Water content in the separated sludge decreased from 98% to lower than 70%,and the goal of reduction and harmless treatment of oily sludge could be achieved,which could provide essential conditions for subsequent resource utilization and could be used to guide industrial production.展开更多
In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
The separator is an essential component of sodium-ion batteries(SIBs)to determine their electrochemical performances.However,the separator with high mechanical strength,good electrolyte wettability and excellent elect...The separator is an essential component of sodium-ion batteries(SIBs)to determine their electrochemical performances.However,the separator with high mechanical strength,good electrolyte wettability and excellent electrochemical performance remains an open challenge.Herein,a new separator consisting of amphoteric nanofibers with abundant functional groups was fabricated through supramolecular assembly of natural polymers for SIB.The uniform nanoporous structure,remarkable mechanical properties and abundant functional groups(e.g.-COOH,-NH_(2)and-OH)endow the separator with lower dissolution activation energy and higher ion migration numbers.These metrics enable the separator to lower the barrier for desolvation of Na^(+),accelerate the migration of Na^(+),and generate more stable solid electrolyte interphase(SEI)and cathode electrolyte interphase(CEI).The battery assembled with the amphoteric nanofiber separator shows higher specific capacity and better stability than that assembled with glass fiber(GF)separator.展开更多
Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in...Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in terms of energy density,power density,and safety.Hence,it is very important to develop next-generation separators for advanced lithium(Li)-based recharge-able batteries including LIBs and Li-S batteries.Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high-end separators due to their simple processes,low-cost equipment,controllable microporous structure,wide material applicability,and availability of multiple functions.In this review,the electrospinning technologies for separators are reviewed in terms of devices,process and environment,and polymer solution systems.Furthermore,strategies toward the improvement of electrospun separators in advanced LIBs and Li-S batteries are presented in terms of the compositions and the structure of nanofibers and separators.Finally,the challenges and prospects of electrospun separators in both academia and industry are proposed.We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li-based batteries.展开更多
The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the format...The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the formation and growth of dendrites seriously compromise battery life and safety.Herein,an yttriastabilized bismuth oxide(YSB) layer is fabricated on the polypropylene(PP) separator,where YSB reacts with Li anode in-situ in the cell to form a multi-component composite interlayer consisting of Li_(3)Bi,Li_(2)O,and Y_(2)O_(3).The interlayer can function not only as a redistributor to regulate Li^(+) distribution but also as an anion adsorber to increase the Li^(+) transference number from 0.37 to 0.79 for suppressing dendrite nucleation and growth.Consequently,compared with the cell with a baseline separator,those with modified separators exhibit prolonged lifespan in both Li/Li symmetrical cells and Li/Cu half-cells.Notably,the full cells coupled with ultrahigh-loading LiFePO_(4) display an excellent cycling performance of 1700 cycles with a high capacity retention of ~80% at 1 C,exhibiting great potential for practical applications.This work provides a feasible and effective new strategy for separator modification towards building a much-anticipated dendrite-free Li anode and realizing long-lifespan lithium metal batteries.展开更多
Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices....Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices.In this paper,we introduce a 2.5μm-thick asymmetric and ultrastrong separator,which can induce tissue-like lithium deposits.The asymmetric separator,denoted by utPE@Cu_(2)O,was prepared by selective synthesis of Cu_(2)O nanoparticles on one of the outer surfaces of a nanofibrous(diameter~10 nm)ultrastrong ultrahigh molecular weight polyethylene(UHMWPE)membrane.Microscopic analysis shows that the lithium deposits have tissue-like morphology,resulting in the symmetric lithium cells assembled using utPE@Cu_(2)O with symmetric Cu_(2)O coating exhibiting stable performance for over 2000 h of cycling.This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries,providing a pathway towards enhanced battery performance and safety.展开更多
Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement e...Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.展开更多
Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Z...Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries.展开更多
Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution a...Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution and structural reconstruction,which are associated with hydrofluoric acid(HF)generation from lithium hexafluorophosphate decomposition.The potential for thermal runaway during the working process poses another challenge.Separators are promising components to alleviate the aforementioned obstacles.Herein,an ultrathin double-layered separator with a 10 lm polyimide(PI)basement and a 2 lm polyvinylidene difluoride(PVDF)coating layer is designed and fabricated by combining a nonsolvent induced phase inversion process and coating method.The PI skeleton provides good stability against potential thermal shrinkage,and the strong PI-PVDF bonding endows the composite separator with robust structural integrity;these characteristics jointly contribute to the extraordinary mechanical tolerance of the separator at elevated temperatures.Additionally,unique HF-scavenging effects are achieved with the formation of-CO…H-F hydrogen bonds for the abundant HF coordination sites provided by the imide ring;hence,the layered Ni-rich cathodes are protected from HF attack,which ultimately reduces transition metal dissolution and facilitates long-term cyclability of the Ni-rich cathodes.Li||NCM811 batteries(where“NCM”indicates LiNi_(x)Co_(y)Mn_(1-x-y)O_(2))with the proposed composite separator exhibit a 90.6%capacity retention after 400 cycles at room temperature and remain sustainable at 60℃with a 91.4%capacity retention after 200 cycles.By adopting a new perspective on separators,this study presents a feasible and promising strategy for suppressing capacity degradation and enabling the safe operation of Ni-rich cathode materials.展开更多
Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithiu...Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.展开更多
Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framewo...Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.展开更多
Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concern...Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.展开更多
Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,t...Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB.展开更多
[Objectives] To establish the high performance liquid chromatography( HPLC) determination method for oxysophocarpine and optimize the extraction and purification technology of oxysophocarpine from Sophora alopecuroide...[Objectives] To establish the high performance liquid chromatography( HPLC) determination method for oxysophocarpine and optimize the extraction and purification technology of oxysophocarpine from Sophora alopecuroides by inverse three-phase membrane cycle.[Methods]Based on the single-factor experiment,the effects of aqueous phase and organic phase volume ratio,the concentration of sodium hydroxide,concentration of hydrochloric acid and extraction cycle time on extraction process of oxysophocarpine were investigated using orthogonal design method,to determine the optimal extraction process. [Results]The oxysophocarpine was determined by Shim-pack VP-ODS chromatographic column( 4. 6 mm × 250 mm,5 μm),mobile phase was methanol-0. 2% phosphoric acid aqueous solution( 7∶ 93),gradient elution,flow rate was 1 m L/min,the sample size was 5 μm,column temperature was 30℃,detection wavelength was 221 nm. Aqueous phase and organic phase volume ratio was 1∶ 1,hydrochloric acid concentration was 0. 3 mol/L,sodium hydroxide concentration was 0. 75 mol/L,water pump flow rate was 6 m L/min,60 min cycle time. The extraction rate of oxysophocarpine 98. 21 % within 60 min under the best experimental conditions. Oxysophocarpine has good linearity relationship within the range of 0. 01-0. 7 mg/m L( r^2= 0. 9978,n = 6),the respective average recovery rate was 97. 47%( RSD = 1. 95%). [Conclusions] This extraction process is simple in operation,the organic solvent has low consumption,and can be used for extraction of alkaloid.展开更多
Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ...Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.展开更多
Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated poro...Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.展开更多
For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous act...For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.展开更多
基金This study was supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021QE030).
文摘In this study,the Stokes formula is used to analyze the separation effect of three-phase separators used in a Oilfield Central Processing Facility.The considered main influencing factors include(but are not limited to)the typical size of oil and water droplets,the residence time and temperature of fluid and the dosage of demulsifier.Using the“Specification for Oil and Gas Separators”as a basis,the control loops and operating parameters of each separator are optimized Considering the Halfaya Oilfield as a testbed,it is shown that the proposed approach can lead to good results in the production stage.
基金supported by the National Natural Science Foundation of China (Grant No. 51878232)Science and technology project of Anhui provincial housing and urban rural development office (No. 2017YF-05)CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China (No. KF201702).
文摘The three-phase separator is a critical component of high-rate anaerobic bioreactors due to its significant contribution in separation of biomass, wastewater, and biogas. However, its role in an anaerobic membrane bioreactor is still not clear. In this study, the distinction between an external anaerobic ceramic membrane bioreactor (EAnCMBR) unequipped (R1) and equipped (R2) with a three-phase separator was investigated in terms of treatment performance, membrane fouling, extracellular polymers of sludge, and microbial community structure. The results indicate that the COD removal efficiencies of Rl and R2 were 98.2%±0.4% and 98.1%±0.4%, respectively, but the start-up period of R2 was slightly delayed. Moreover, the membrane fouling rate of R2 (0.4 kPa/d) was higher than that of Rl (0.2 kPa/d). Interestingly, the methane leakage from R2 (0.1 L/d) was 20 times higher than that from Rl (0.005 L/d). The results demonstrate that the three-phase separator aggravated the membrane fouling rate and methane leakage in the EAnCMBR. Therefore, this study provides a novel perspective on the effects of a three-phase separator in an EAnCMBR.
基金financially supported by National Natural Science Foundation of China(No.51872090,51772097)Hebei Natural Science Fund for Distinguished Young Scholar(No.E2019209433)+2 种基金Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)Natural Science Foundation of Hebei Province(No.E2020209151)the financial support from Donghua University(101-08-0241022,23D210105,and 101-07-005759)。
文摘Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs.
文摘Three-phase centrifuge was used to process oily sludge,and the requirement of mud,oil and water three-phase separation was satisfied through the optimization of parameters. The results showed that when the input quantity was lower than 5 m^3/h,the optimal operation parameters of the three-phase centrifuge are shown as follows: the frequency of the main motor and vice motor was 33 and 30 Hz respectively,and the flocculant flow was 0. 7 m^3/h,while the oily sludge temperature was 55 ℃. Water content in the separated sludge decreased from 98% to lower than 70%,and the goal of reduction and harmless treatment of oily sludge could be achieved,which could provide essential conditions for subsequent resource utilization and could be used to guide industrial production.
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
基金supported by the Outstanding Youth Team Project of Guangdong Natural Science Foundation(2023B1515040013)Guangdong Basic and Applied Basic Research Foundation(2023A1515012215,2023B1515040013,2023A1515012519)+1 种基金State Key Laboratory of Pulp&Paper Engineering(2023C07,2023PY03)Guangdong Col ege Students’Scientific and Technological Innovation(“Climbing Program”Special Fund,Pdjh2022a0026)
文摘The separator is an essential component of sodium-ion batteries(SIBs)to determine their electrochemical performances.However,the separator with high mechanical strength,good electrolyte wettability and excellent electrochemical performance remains an open challenge.Herein,a new separator consisting of amphoteric nanofibers with abundant functional groups was fabricated through supramolecular assembly of natural polymers for SIB.The uniform nanoporous structure,remarkable mechanical properties and abundant functional groups(e.g.-COOH,-NH_(2)and-OH)endow the separator with lower dissolution activation energy and higher ion migration numbers.These metrics enable the separator to lower the barrier for desolvation of Na^(+),accelerate the migration of Na^(+),and generate more stable solid electrolyte interphase(SEI)and cathode electrolyte interphase(CEI).The battery assembled with the amphoteric nanofiber separator shows higher specific capacity and better stability than that assembled with glass fiber(GF)separator.
基金The authors gratefully acknowledge financial support from Dagong Equipment Manufacturing(Tianjin)Co.,Ltd.(53H23019)the Tianjin Research Innovation Project for Postgraduate Students(2022BKYZ037)the National Natural Science Foundation of China(22179093).
文摘Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in terms of energy density,power density,and safety.Hence,it is very important to develop next-generation separators for advanced lithium(Li)-based recharge-able batteries including LIBs and Li-S batteries.Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high-end separators due to their simple processes,low-cost equipment,controllable microporous structure,wide material applicability,and availability of multiple functions.In this review,the electrospinning technologies for separators are reviewed in terms of devices,process and environment,and polymer solution systems.Furthermore,strategies toward the improvement of electrospun separators in advanced LIBs and Li-S batteries are presented in terms of the compositions and the structure of nanofibers and separators.Finally,the challenges and prospects of electrospun separators in both academia and industry are proposed.We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li-based batteries.
基金supported by the National Nature Science Foundation of China [52172247, 21875237]the National Key R&D Program of China [2018YFB0905400]。
文摘The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the formation and growth of dendrites seriously compromise battery life and safety.Herein,an yttriastabilized bismuth oxide(YSB) layer is fabricated on the polypropylene(PP) separator,where YSB reacts with Li anode in-situ in the cell to form a multi-component composite interlayer consisting of Li_(3)Bi,Li_(2)O,and Y_(2)O_(3).The interlayer can function not only as a redistributor to regulate Li^(+) distribution but also as an anion adsorber to increase the Li^(+) transference number from 0.37 to 0.79 for suppressing dendrite nucleation and growth.Consequently,compared with the cell with a baseline separator,those with modified separators exhibit prolonged lifespan in both Li/Li symmetrical cells and Li/Cu half-cells.Notably,the full cells coupled with ultrahigh-loading LiFePO_(4) display an excellent cycling performance of 1700 cycles with a high capacity retention of ~80% at 1 C,exhibiting great potential for practical applications.This work provides a feasible and effective new strategy for separator modification towards building a much-anticipated dendrite-free Li anode and realizing long-lifespan lithium metal batteries.
基金financial support from the Guangzhou Municipal Government.
文摘Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices.In this paper,we introduce a 2.5μm-thick asymmetric and ultrastrong separator,which can induce tissue-like lithium deposits.The asymmetric separator,denoted by utPE@Cu_(2)O,was prepared by selective synthesis of Cu_(2)O nanoparticles on one of the outer surfaces of a nanofibrous(diameter~10 nm)ultrastrong ultrahigh molecular weight polyethylene(UHMWPE)membrane.Microscopic analysis shows that the lithium deposits have tissue-like morphology,resulting in the symmetric lithium cells assembled using utPE@Cu_(2)O with symmetric Cu_(2)O coating exhibiting stable performance for over 2000 h of cycling.This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries,providing a pathway towards enhanced battery performance and safety.
基金the National Natural Science Foundation of China(52304236)the Natural Science Foundation of Shandong Province(ZR2021QE076)for the financial support to this research extracted from the project.
文摘Rapid and sensitive detection of dissolved gases in seawater is quite essential for the investigation of the global carbon cycle.Large quantities of in situ optical detection techniques showed restricted measurement efficiency,owing to the single gas sensor without the identification ability of multiple gases.In this work,a novel gas-liquid Raman detection method of monitoring the multi-component dissolved gases was proposed based on a continuous gas-liquid separator under a large difference of partial pressure.The limit of detection(LOD)of the gas Raman spectrometer could arrive at about 14 μl·L^(-1)for N_(2)gas.Moreover,based on the continuous gas-liquid separation process,the detection time of the dissolved gases could be largely decreased to about 200 s compared with that of the traditional detection method(30 min).Effect of equilibrium time on gas-liquid separation process indicated that the extracted efficiency and decay time of these dissolved gases was CO_(2)>O_(2)>N_(2).In addition,the analysis of the relationship between equilibrium time and flow speed indicated that the decay time decreased with the increase of the flow speed.The validation and application of the developed system presented its great potential for studying the components and spatiotemporal distribution of dissolved gases in seawater.
基金supported by grants from the National Key Research and Development Program of China(No.2021YFF0500600)the Haihe Laboratory of Sustainable Chemical Transformations,and the Fundamental Research Funds for the Central Universities.We appreciate Neware Technology Co.,Ltd for their battery test systems in the TJU Nanoyang-Neware Joint Laboratory for Energy Innovation.
文摘Aqueous zinc(Zn)batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost.However,Zn dendrite growth severely restricts the use of Zn anodes.To effectively suppress Zn dendrite growth,we propose a bilayer separator consisting of commercial butter paper and glassfiber membrane.The dense cellulose-based butter paper(BP)with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing,effectively suppressing the Zn dendrite growth.As a result,the bilayer separators endow the ZnjjZn symmetrical batteries with a superlong cycling life of Zn anodes(over 5000 h)at 0.5 mA cm^(-2) and the full batteries enhanced capacity retention,demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries.
基金supported by the Science Foundation of the National Key Laboratory of Science and Technology on Advanced Composites in Special Environments.This work was sponsored by the Natural Science Foundation of Chongqing,China(CSTC2021jcyjmsxmX10305,CSTB2022NSCQ-MSX0246,CSTB2022NSCQMSX0242,CSTB2022NSCQ-MSX1244,CSTB2022NSCQ-MSX0441,CSTB2022NSCQ-MSX1356,CSTB2022NSCQ-MSX1572,CSTB2022 NSCQ-MSX1583,CSTB2022NSCQMSX0487,CSTB2022TFII-OFX0034,and CSTB2023TIAD-KPX0010)the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2023TIAD-KPX0010).
文摘Nickel-rich layered Li transition metal oxides are the most promising cathode materials for high-energydensity Li-ion batteries.However,they exhibit rapid capacity degradation induced by transition metal dissolution and structural reconstruction,which are associated with hydrofluoric acid(HF)generation from lithium hexafluorophosphate decomposition.The potential for thermal runaway during the working process poses another challenge.Separators are promising components to alleviate the aforementioned obstacles.Herein,an ultrathin double-layered separator with a 10 lm polyimide(PI)basement and a 2 lm polyvinylidene difluoride(PVDF)coating layer is designed and fabricated by combining a nonsolvent induced phase inversion process and coating method.The PI skeleton provides good stability against potential thermal shrinkage,and the strong PI-PVDF bonding endows the composite separator with robust structural integrity;these characteristics jointly contribute to the extraordinary mechanical tolerance of the separator at elevated temperatures.Additionally,unique HF-scavenging effects are achieved with the formation of-CO…H-F hydrogen bonds for the abundant HF coordination sites provided by the imide ring;hence,the layered Ni-rich cathodes are protected from HF attack,which ultimately reduces transition metal dissolution and facilitates long-term cyclability of the Ni-rich cathodes.Li||NCM811 batteries(where“NCM”indicates LiNi_(x)Co_(y)Mn_(1-x-y)O_(2))with the proposed composite separator exhibit a 90.6%capacity retention after 400 cycles at room temperature and remain sustainable at 60℃with a 91.4%capacity retention after 200 cycles.By adopting a new perspective on separators,this study presents a feasible and promising strategy for suppressing capacity degradation and enabling the safe operation of Ni-rich cathode materials.
基金supported by the Science Foundation of National Key Laboratory of Science and Technology on Advanced Composites in Special Environmentsthe National Natural Science Foundation of China(12002109)
文摘Piezoelectric ceramic and polymeric separators have been proposed to effectively regulate Li deposition and suppress dendrite growth,but such separators still fail to satisfactorily support durable operation of lithium metal batteries owing to the fragile ceramic layer or low-piezoelectricity polymer as employed.Herein,by combining PVDF-HFP and ferroelectric BaTiO_(3),we develop a homogeneous,single-layer composite separator with strong piezoelectric effects to inhibit dendrite growth while maintaining high mechanical strength.As squeezed by local protrusion,the polarized PVDF-HFP/BaTiO_(3)composite separator generates a local voltage to suppress the local-intensified electric field and further deconcentrate regional lithium-ion flux to retard lithium deposition on the protrusion,hence enabling a smoother and more compact lithium deposition morphology than the unpoled composite separator and the pure PVDF-HFP separator,especially at high rates.Remarkably,the homogeneous incorporation of BaTiO_(3)highly improves the piezoelectric performances of the separator with residual polarization of 0.086 pC cm^(-2)after polarization treatment,four times that of the pure PVDF-HFP separator,and simultaneously increases the transference number of lithium-ion from 0.45 to 0.57.Beneficial from the prominent piezoelectric mechanism,the polarized PVDF-HFP/BaTiO_(3)composite separator enables stable cyclic performances of Li||LiFePO_(4)cells for 400 cycles at 2 C(1 C=170 mA g^(-1))with a capacity retention above 99%,and for 600 cycles at 5 C with a capacity retention over 85%.
基金financially supported by National Natural Science Foundation of China(No.82204604,22304055)Youth Talent Program of Hebei Provincial Education Department(No.BJ2018020)+1 种基金Natural Science Foundation of Hebei Province(No.E2020209151,E2022209158,H2022209012)Science and Technology Project of Hebei Education Department(No.JZX2024026)。
文摘Aqueous zinc ion batteries(AZIBs)are one of the promising energy storage devices.However,uncontrolled dendrite and side reactions have seriously hindered its further application.In this study,the metal-organic framework(MOF)functionalized glass fiber separator(GF-PFC-31)was used to regulate interfacial behavior of zinc metal anode,enabling the development of high-performance AZIBs.In PFC-31,there areπ-πinteractions between two adjacent benzene rings with a spacing of 3.199 A.This spacing can block the passage of[Zn(H_(2)O)_6]^(2+)(8.6 A in diameter)through the GF-PFC-31 separator to a certain extent,which promotes the deposition process of Zn ions.In addition,the sulfonic acid group(-S03H)contained in GF-PFC-31 can form a hydrogen bonding network with H_(2)O,which can provide a desolvation effect and reduce the side reaction.Consequently,GF-PFC-31 separator achieves uniform deposition of Zn ions.The Zn‖GF-PFC-31‖Zn symmetric cell exhibits stable cycle life(3000 h at 1.2 mA cm^(-2),2000 h at 0.3 mA cm^(-2),and 2000 h at 5.0 mA cm^(-2)),and Zn‖GF-PFC-31‖MnO_(2) full cell with GF-PFC-31 separator can cycle for 1000 cycles at 1.2 A g^(-1)with capacity retention rate of 82.5%.This work provides a promising method to achieve high-performance AZIBs.
基金supported by the National Key Research and Development Program of China(No.2022YFA1504100)the National Natural Science Foundation of China(Nos.22005215,22279089,and 22178251).
文摘Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.
基金supported by the Science Foundation of China University of Petroleum,Beijing(No.ZX20230047)Open Research Fund of State Key Laboratory of Coking Coal Exploitation and Comprehensive Utilization,China Pingmei Shenma Group(No.41040220201308).
文摘Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB.
基金Supported by Project of National Natural Science Foundation(21162030)
文摘[Objectives] To establish the high performance liquid chromatography( HPLC) determination method for oxysophocarpine and optimize the extraction and purification technology of oxysophocarpine from Sophora alopecuroides by inverse three-phase membrane cycle.[Methods]Based on the single-factor experiment,the effects of aqueous phase and organic phase volume ratio,the concentration of sodium hydroxide,concentration of hydrochloric acid and extraction cycle time on extraction process of oxysophocarpine were investigated using orthogonal design method,to determine the optimal extraction process. [Results]The oxysophocarpine was determined by Shim-pack VP-ODS chromatographic column( 4. 6 mm × 250 mm,5 μm),mobile phase was methanol-0. 2% phosphoric acid aqueous solution( 7∶ 93),gradient elution,flow rate was 1 m L/min,the sample size was 5 μm,column temperature was 30℃,detection wavelength was 221 nm. Aqueous phase and organic phase volume ratio was 1∶ 1,hydrochloric acid concentration was 0. 3 mol/L,sodium hydroxide concentration was 0. 75 mol/L,water pump flow rate was 6 m L/min,60 min cycle time. The extraction rate of oxysophocarpine 98. 21 % within 60 min under the best experimental conditions. Oxysophocarpine has good linearity relationship within the range of 0. 01-0. 7 mg/m L( r^2= 0. 9978,n = 6),the respective average recovery rate was 97. 47%( RSD = 1. 95%). [Conclusions] This extraction process is simple in operation,the organic solvent has low consumption,and can be used for extraction of alkaloid.
基金financially supported by the Original Exploration Project of the National Natural Science Foundation of China(No.52150079)the National Natural Science Foundation of China(Nos.U22A20130,U2004215,and 51974280)+1 种基金the Natural Science Foundation of Henan Province of China(No.232300421196)the Project of Zhongyuan Critical Metals Laboratory of China(Nos.GJJSGFYQ202304,GJJSGFJQ202306,GJJSGFYQ202323,GJJSGFYQ202308,and GJJSGFYQ202307)。
文摘Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
文摘Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.
文摘For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.