In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of D...In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of DC,making the controller design the same as the DC-DC converter[1].It provides controllable gain benefits at the steady-state operating point,and finally realizes zero steady-state error[2].In addition,the creative analytical model is dedicated to building up a series of virtual quantities orthogonal to the actual single-phase system.In general,orthogonal imaginary numbers get the reference signal by delaying the real quantity by a quarter period.However,the introduction of such time delay makes the dynamic response of the system worse.In this paper,orthogonal quantities are generated from a virtual axis system parallel to the real axis,which can effectively improve the dynamic performance of traditional methods without increasing the complexity of controller structure.Through PSCAD simulation,the ideal experimental results are obtained.展开更多
With the rapid development and widespread applications of power electronic converters,strong fault-tolerant capability of power electronic converters is required since they play important roles in power systems.In thi...With the rapid development and widespread applications of power electronic converters,strong fault-tolerant capability of power electronic converters is required since they play important roles in power systems.In this paper,a review of one of the most promising fault-tolerant topologies for semiconductor open-circuit fault,called four-switch three-phase(FSTP)topology,is presented in terms of modeling analysis,modulation techniques,and control strategies.The configuration of FSTP voltage source converter(VSC)is illustrated.To minimize the negative effects caused by the innate drawbacks of this fault-tolerant converter topology,considerable research has been carried out regarding modulation techniques and control strategies.The modulation principle for FSTP topology is explained in detail,since the performance of FSTP VSCs relies on it.This paper aims to illustrate current research progress on this fault-tolerant FSTP VSC topology.展开更多
文摘In this paper,a new method for adjusting the current of three-phase voltage source DC-AC converter in orthogonal(DQ)reference frame is presented.In the DQ reference system,AC variable appears in the constant form of DC,making the controller design the same as the DC-DC converter[1].It provides controllable gain benefits at the steady-state operating point,and finally realizes zero steady-state error[2].In addition,the creative analytical model is dedicated to building up a series of virtual quantities orthogonal to the actual single-phase system.In general,orthogonal imaginary numbers get the reference signal by delaying the real quantity by a quarter period.However,the introduction of such time delay makes the dynamic response of the system worse.In this paper,orthogonal quantities are generated from a virtual axis system parallel to the real axis,which can effectively improve the dynamic performance of traditional methods without increasing the complexity of controller structure.Through PSCAD simulation,the ideal experimental results are obtained.
文摘With the rapid development and widespread applications of power electronic converters,strong fault-tolerant capability of power electronic converters is required since they play important roles in power systems.In this paper,a review of one of the most promising fault-tolerant topologies for semiconductor open-circuit fault,called four-switch three-phase(FSTP)topology,is presented in terms of modeling analysis,modulation techniques,and control strategies.The configuration of FSTP voltage source converter(VSC)is illustrated.To minimize the negative effects caused by the innate drawbacks of this fault-tolerant converter topology,considerable research has been carried out regarding modulation techniques and control strategies.The modulation principle for FSTP topology is explained in detail,since the performance of FSTP VSCs relies on it.This paper aims to illustrate current research progress on this fault-tolerant FSTP VSC topology.