In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperatur...In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.展开更多
Abst[Objective] This study was to understand the genetic dynamics of three-line hybrid rice, and explore the respective effect of sterile line and restoring line on grain characters of hybrid rica. [Method] Four three...Abst[Objective] This study was to understand the genetic dynamics of three-line hybrid rice, and explore the respective effect of sterile line and restoring line on grain characters of hybrid rica. [Method] Four three-line stedle lines and 27 restoring lines(cultivars) commonly culti- vated in Central China region were regarded as expadmental materials to conduct 4 x27NCII cross design, and the grain characters of three-line hybrid rico were analyzed at genetic and correlation levels. [ Result] Four characters of grain length, grain width, 1 000-grain weight and length- width ratio play the leading role in additive gene effect; these four characters were simultaneously influenced by male parent and female parent, but the effect from male parent was relatively larger. The grain length, grain width, 1 000-grain weight and length-width ratio all have high brood hedtabUities( respectively 99.65%, 98.31%, 95.27% and 98.81% ). Correlation analysis showed that grain length was positively correlated with 1 000-grain weight and length-width ratio at extremely significant level; 1 000-grain weight was positively correlated with grain length and length- width ratio at extremely significant level, and was insignificantly correlated with grain width; grain width was negatively correlated with grain length and length-width ratio at extremely significant level. Path analysis showed that the direct path coefficients of grain length, grain width and 1 0(30- grain weight to length-width ratio were 0.624 6, -0.555 9 and -0.015 8, respectively. [ Conclusion] This study systematically analyzed the effects of stedle line and restoring line on grain characters of hybrid rice, which provided theoretical basis for breeding high quality and yield hy- brid dce.展开更多
Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated poro...Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.展开更多
[Objective] The aim was to study the reproduction of the three-line genic male sterile (GMS) lineparent Mian7MB-1 (B. NapusL.) and the seed production of F1 through somatic tissue culture. [Methed] Through hybridi...[Objective] The aim was to study the reproduction of the three-line genic male sterile (GMS) lineparent Mian7MB-1 (B. NapusL.) and the seed production of F1 through somatic tissue culture. [Methed] Through hybridization, a new breeding material Mian 7MB-1 in three-line genic temporary maintainer line propagated by tissue culture was used to improve the sterile plant rate of rapeseed in dual-purpose recessive GMS line, such as Mian 7AB type, S45AB type, and etc. And then the variety comparative test was performed. [Result] In order to avoid some fertility restoration phenomena occurring during the process of self-reproduction, Mian 7AB was propagated in bulk with somatic tissue culture of temporary maintainer line plant stem. The propagated temporary maintainer line seedlings were applied to the breeding and seed production of net room male sterile line parent, promoting the sterile plant rate of the male sterile line parent to 91.7% -93.5%. The male sterile line parents per hectare were enough for the seed production of hybrid F1 in 7 500 -15 000 hm^2. [ Conclusion ] Compared with the original dual-purpose GMS line, the seed production ultilizing male sterile line with high sterile plant rate greatly reduced the labor, significantly improved the seed yield, ensuring the seed quality and forming a perfect breeding and seed production system.展开更多
This paper described the whole process of three line hybrid pepper seed production in detail, including requirement of the seed production base, parent culti- vation, field management, and specified the key operation ...This paper described the whole process of three line hybrid pepper seed production in detail, including requirement of the seed production base, parent culti- vation, field management, and specified the key operation techniques in seed pro- duction, such as parental impurity removal to preserve pure state, pollen collection, pollination and seed collecting essentials. This specification is of guiding significance for the production of hybrid pepper seed and ensuring the purity of hybrid pepper seed.展开更多
For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous act...For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.展开更多
The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inve...The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.展开更多
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos...Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.展开更多
In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-p...In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.展开更多
An innovative green process of producing ε-caprolactam was proposed by integrating ammoximation and Beckmann rearrangement effectively. As a first part of the new process, TS-1 molecular sieve-catalyzed synthesis of ...An innovative green process of producing ε-caprolactam was proposed by integrating ammoximation and Beckmann rearrangement effectively. As a first part of the new process, TS-1 molecular sieve-catalyzed synthesis of cyclohexanone oxime from cyclohexanone, ammonia and hydrogen peroxide was carried out in a batch plant. Cyclohexane was used as the solvent in the three-phase reaction system. The influences of essential process parameters on ammoximation were investigated. Under the reaction conditions as catalyst content of 2.5% (by mass); H 2 O 2 /yclohexanone molar ratio of 1.10; NH 3 /cyclohexanone molar ratio of 2.20; reaction temperature of 343 K; reaction time of 5 h, high conversion of cyclohexanone and selectivity to oxime (both>99%) were obtained. Thus, the three-phase ammoximation process showed equal catalytic activity as TS-1 but much more convenient and simpler for the separation of catalyst in comparison to the industrial two-phase system with t-butanol used as solvent.展开更多
Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the perfo...Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes.展开更多
Constructing heterojunction is an effective strategy to develop high-performance non-preciousmetal-based catalysts for electrochemical water splitting(WS).Herein,we design and prepare an N-doped-carbon-encapsulated Ni...Constructing heterojunction is an effective strategy to develop high-performance non-preciousmetal-based catalysts for electrochemical water splitting(WS).Herein,we design and prepare an N-doped-carbon-encapsulated Ni/MoO_(2) nano-needle with three-phase heterojunction(Ni/MoO_(2)@CN)for accelerating the WS under industrial alkaline condition.Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface,which optimizes the adsorption energy of H-and O-containing intermediates to obtain the best ΔG_(H*) for hydrogen evolution reaction(HER)and decrease the ΔG value of ratedetermining step for oxygen evolution reaction(OER),thus enhancing the HER/OER catalytic activity.Electrochemical results confirm that Ni/MoO_(2)@CN exhibits good activity for HER(ƞ_(-10)=33 mV,ƞ_(-1000)=267 mV)and OER(ƞ_(10)=250 mV,ƞ_(1000)=420 mV).It shows a low potential of 1.86 V at 1000 mA cm^(−2) for WS in 6.0 M KOH solution at 60℃ and can steadily operate for 330 h.This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites,faster mass diffusion,and bubbles release.This work provides a unique idea for designing high efficiency catalytic materials for WS.展开更多
The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are tw...The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are two major problems existing in current-source multilevel inverters, one is the complex PWM control method (2-logic to 3-logic conversion), and the other is the problem of current-unbalance between different levels. A simple current-balance control method via DC current feedback is applied in each single-phase 5-level CSI cell to implement the current-balance control between different levels. And to reduce the output current harmonics, POD PWM control technique was used. Simulation and experimental results showed that this new three-phase 5-level CSI topology operates correctly.展开更多
A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric ...A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.展开更多
The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governi...The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.展开更多
A three-phase reactor mathematical model was set up to simulate and design a three-phase bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas, considering both the influence of part inert c...A three-phase reactor mathematical model was set up to simulate and design a three-phase bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas, considering both the influence of part inert carrier backmixing on transfer and the influence of catalyst grain sedimentation on reaction. On the basis of this model, the influences of the size and reaction conditions of a 100000 t/a DME reactor on capacity were investigated. The optimized size of the 10000 t/a DME synthesis reactor was proposed as follows: diameter 3.2 m, height 20 m, built-in 400 tube heat exchanger (Ф 38×2 mm), and inert heat carrier paraffin oil 68 t and catalyst 34.46 t. Reaction temperature and pressure were important factors influencing the reaction conversion for different size reactors. Under the condition of uniform catalyst concentration distribution, higher pressure and temperature were proposed to achieve a higher production capacity of DME. The best ratio of fresh syngas for DME synthesis was 2.04.展开更多
The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in...The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.展开更多
Three-phase centrifuge was used to process oily sludge,and the requirement of mud,oil and water three-phase separation was satisfied through the optimization of parameters. The results showed that when the input quant...Three-phase centrifuge was used to process oily sludge,and the requirement of mud,oil and water three-phase separation was satisfied through the optimization of parameters. The results showed that when the input quantity was lower than 5 m^3/h,the optimal operation parameters of the three-phase centrifuge are shown as follows: the frequency of the main motor and vice motor was 33 and 30 Hz respectively,and the flocculant flow was 0. 7 m^3/h,while the oily sludge temperature was 55 ℃. Water content in the separated sludge decreased from 98% to lower than 70%,and the goal of reduction and harmless treatment of oily sludge could be achieved,which could provide essential conditions for subsequent resource utilization and could be used to guide industrial production.展开更多
As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen e...As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen evolution reaction(HER),have become an emerging research direction and have gained increasing attention due to their advantages of environmental friendliness and sustainability.Various studies have been designed to accelerate sluggish kinetics but with limited results.Most of them promote the reaction by modulating the intrinsic properties of the catalyst,ignoring the synergistic effect of the reaction as a whole.Due to the introduction of gas,traditional liquid-solid two-phase reactions are no longer applicable to future research.Since gas-involved electrochemical reactions mostly occur at the junctions of gaseous reactants,liquid electrolytes and solid catalysts,the focus of future research on reaction kinetics should gradually shift to three-phase reaction interfaces.In this review,we briefly introduce the formation and constraints of the three-phase interface and propose three criteria to judge its merit,namely,the active site,mass diffusion and electron mass transfer.Subsequently,a series of modulation methods and relevant works are discussed in detail from the three improvement directions of‘exposing more active sites,promoting mass diffusion and accelerating electron transfer’.Definitively,we provide farsighted insights into the understanding and research of three-phase interfaces in the future and point out the possible development direction of future regulatory methods,hoping that this review can broaden the future applications of the three-phase interface,including but not limited to gas-involved electrochemical reactions.展开更多
The local gas-phase flow characteristics such as local gas holdup(εg), local bubble velocity (V_b) and local bubble mean diameter(d_b) at a specified point in a gas-liquid-solid three-phase reversedflow jet loop reac...The local gas-phase flow characteristics such as local gas holdup(εg), local bubble velocity (V_b) and local bubble mean diameter(d_b) at a specified point in a gas-liquid-solid three-phase reversedflow jet loop reactor was experimentally investigated by a five-pointconductivity probe. The effects of gas jet flow rate, liquid jet flowrate, solid loading, nozzle diameter and axial position on the localεg, V_b and d_b profiles were discussed. The presence of solids atlow solid concentrations not only increased the local εg and V_b,but also decreased the local d_b. The optimum solid loading for themaximum local εg and V_b together with the minimum local d_b was0.16×10^-3 m^3, corresponding to a solid volume fraction ε_S=2.5/100.展开更多
基金supported by the National Natural Science Foundation of China(No.62271109)。
文摘In this paper,a control scheme based on current optimization is proposed for dual three-phase permanent-magnet synchronous motor(DTP-PMSM)drive to reduce the low-frequency temperature swing.The reduction of temperature swing can be equivalent to reducing maximum instantaneous phase copper loss in this paper.First,a two-level optimization aiming at minimizing maximum instantaneous phase copper loss at each electrical angle is proposed.Then,the optimization is transformed to a singlelevel optimization by introducing the auxiliary variable for easy solving.Considering that singleobjective optimization trades a great total copper loss for a small reduction of maximum phase copper loss,the optimization considering both instantaneous total copper loss and maximum phase copper loss is proposed,which has the same performance of temperature swing reduction but with lower total loss.In this way,the proposed control scheme can reduce maximum junction temperature by 11%.Both simulation and experimental results are presented to prove the effectiveness and superiority of the proposed control scheme for low-frequency temperature swing reduction.
文摘Abst[Objective] This study was to understand the genetic dynamics of three-line hybrid rice, and explore the respective effect of sterile line and restoring line on grain characters of hybrid rica. [Method] Four three-line stedle lines and 27 restoring lines(cultivars) commonly culti- vated in Central China region were regarded as expadmental materials to conduct 4 x27NCII cross design, and the grain characters of three-line hybrid rico were analyzed at genetic and correlation levels. [ Result] Four characters of grain length, grain width, 1 000-grain weight and length- width ratio play the leading role in additive gene effect; these four characters were simultaneously influenced by male parent and female parent, but the effect from male parent was relatively larger. The grain length, grain width, 1 000-grain weight and length-width ratio all have high brood hedtabUities( respectively 99.65%, 98.31%, 95.27% and 98.81% ). Correlation analysis showed that grain length was positively correlated with 1 000-grain weight and length-width ratio at extremely significant level; 1 000-grain weight was positively correlated with grain length and length- width ratio at extremely significant level, and was insignificantly correlated with grain width; grain width was negatively correlated with grain length and length-width ratio at extremely significant level. Path analysis showed that the direct path coefficients of grain length, grain width and 1 0(30- grain weight to length-width ratio were 0.624 6, -0.555 9 and -0.015 8, respectively. [ Conclusion] This study systematically analyzed the effects of stedle line and restoring line on grain characters of hybrid rice, which provided theoretical basis for breeding high quality and yield hy- brid dce.
文摘Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.
基金Supported by "11thFive-Year" Crop Breeding Research of SichuanProvince "11thFive-Year" Joint Breeding Research Project Fun-ding of Sichuan Province.~~
文摘[Objective] The aim was to study the reproduction of the three-line genic male sterile (GMS) lineparent Mian7MB-1 (B. NapusL.) and the seed production of F1 through somatic tissue culture. [Methed] Through hybridization, a new breeding material Mian 7MB-1 in three-line genic temporary maintainer line propagated by tissue culture was used to improve the sterile plant rate of rapeseed in dual-purpose recessive GMS line, such as Mian 7AB type, S45AB type, and etc. And then the variety comparative test was performed. [Result] In order to avoid some fertility restoration phenomena occurring during the process of self-reproduction, Mian 7AB was propagated in bulk with somatic tissue culture of temporary maintainer line plant stem. The propagated temporary maintainer line seedlings were applied to the breeding and seed production of net room male sterile line parent, promoting the sterile plant rate of the male sterile line parent to 91.7% -93.5%. The male sterile line parents per hectare were enough for the seed production of hybrid F1 in 7 500 -15 000 hm^2. [ Conclusion ] Compared with the original dual-purpose GMS line, the seed production ultilizing male sterile line with high sterile plant rate greatly reduced the labor, significantly improved the seed yield, ensuring the seed quality and forming a perfect breeding and seed production system.
基金Supported by the Planning Subject of"the Twelfth Five-Year-Plan"in National Science and Technology for the Rural Development in China(2011BAD35B07)the Job Subsidies for the Experts in Staple Vegetable Breeding of Vegetable Industry of Hunan Province+1 种基金the"the Twelfth Five-Year-Plan"of National Science and Technology Support Plan(2012BAD02B02)the Special Fund for Agro-Scientific Research in Public Interest(201303028)~~
文摘This paper described the whole process of three line hybrid pepper seed production in detail, including requirement of the seed production base, parent culti- vation, field management, and specified the key operation techniques in seed pro- duction, such as parental impurity removal to preserve pure state, pollen collection, pollination and seed collecting essentials. This specification is of guiding significance for the production of hybrid pepper seed and ensuring the purity of hybrid pepper seed.
文摘For three phase four-wire active power filters (APFs), several typical power theories and corresponding current reference generation strategies are induced, p-q, d-q, unify power factor (UPF) and instantaneous active current (IAC) methods are analyzed and compared with each other. The interpretation of active and reactive currents in non-sinusoidal and unbalanced three-phase four-wire systems is given based on the generalized instantaneous reactive power theory. The performance and the characteristic are evaluated, and the application conditions of current reference generation strategies are concluded. Simulation results under different source voltages and loads verify the evaluation result.
文摘The three-phase bridge inverter is used as the converter topology in the power controller for a 9 kW doubly salient permanent magnet (DSPM) motor. Compared with common three-phase bridge inverters, the proposed inverter works under more complicated conditions with different principles for special winding back EMFs, position signals of hall sensors, and the given mode of switches. The ideal steady driving principles of the inverter for the motor are given. The working state with asymmetric winding back EMFs, inaccurate position signals of hall sensors, and the changing input voltage is analyzed. Finally, experimental results vertify that the given anal ysis is correct.
基金supported by the National Natural Science Foundation of China(Grants No.51579170 and 51179118)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51321065)
文摘Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress.
基金Project(51375498) supported by the National Natural Science Foundation of China
文摘In the hydraulic transporting process of cutter-suction mining natural gas hydrate, when the temperature-pressure equilibrium of gas hydrate is broken, gas hydrates dissociate into gas. As a result, solid-liquid two-phase flow(hydrate and water) transforms into gas-solid-liquid three-phase flow(methane, hydrate and water) inside the pipeline. The Euler model and CFD-PBM model were used to simulate gas-solid-liquid three-phase flow. Numerical simulation results show that the gas and solid phase gradually accumulate to the center of the pipe. Flow velocity decreases from center to boundary of the pipe along the radial direction. Comparison of numerical simulation results of two models reveals that the flow state simulated by CFD-PBM model is more uniform than that simulated by Euler model, and the main behavior of the bubble is small bubbles coalescence to large one. Comparison of numerical simulation and experimental investigation shows that the values of flow velocity and gas fraction in CFD-PBM model agree with experimental data better than those in Euler model. The proposed PBM model provides a more accurate and effective way to estimate three-phase flow state of transporting gas hydrate within the submarine pipeline.
基金Supported by the National Natural Science Foundation of China and Sinopec (20736009)
文摘An innovative green process of producing ε-caprolactam was proposed by integrating ammoximation and Beckmann rearrangement effectively. As a first part of the new process, TS-1 molecular sieve-catalyzed synthesis of cyclohexanone oxime from cyclohexanone, ammonia and hydrogen peroxide was carried out in a batch plant. Cyclohexane was used as the solvent in the three-phase reaction system. The influences of essential process parameters on ammoximation were investigated. Under the reaction conditions as catalyst content of 2.5% (by mass); H 2 O 2 /yclohexanone molar ratio of 1.10; NH 3 /cyclohexanone molar ratio of 2.20; reaction temperature of 343 K; reaction time of 5 h, high conversion of cyclohexanone and selectivity to oxime (both>99%) were obtained. Thus, the three-phase ammoximation process showed equal catalytic activity as TS-1 but much more convenient and simpler for the separation of catalyst in comparison to the industrial two-phase system with t-butanol used as solvent.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51374101 and 51474158)the National Basic Research Program of China(973 Program,Grant No.2014CB239203)the Scientific Research Project of Education Department of Hunan Province(Grant No.14B047)
文摘Based on the momentum theorem, the fluid governing equation in a lifting pipe is proposed by use of the method combining theoretical analysis with empirical correlations related to the previous research, and the performance of an airlift pump can be clearly characterized by the triangular relationship among the volumetric flux of air, water and solid particles, which are obtained respectively by using numerical calculation. The meso-scale river sand is used as tested particles to examine the theoretical model. Results of the model are compared with the data in three-phase flow obtained prior to the development of the present model, by an independent experimental team that used the physical conditions of the present approach. The analytical error can be controlled within 12% for predicting the volumetric flux of water and is smaller than that (±16%) of transporting solid particles in three-phase flow. The experimental results and computations are in good agreement for air-water two-phase flow within a margin of ±8%. Reasonable agreement justifies the use of the present model for engineering design purposes.
基金supported by the National Natural Science Foundation of China(21872040,22162004)the Hundred Talents Program of Guangxi Universities,the Excellent Scholars and Innovation Team of Guangxi Universities+1 种基金the Innovation Project of Guangxi Graduate Education(YCBZ2021011)the High-performance Computing Platform of Guangxi University.
文摘Constructing heterojunction is an effective strategy to develop high-performance non-preciousmetal-based catalysts for electrochemical water splitting(WS).Herein,we design and prepare an N-doped-carbon-encapsulated Ni/MoO_(2) nano-needle with three-phase heterojunction(Ni/MoO_(2)@CN)for accelerating the WS under industrial alkaline condition.Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface,which optimizes the adsorption energy of H-and O-containing intermediates to obtain the best ΔG_(H*) for hydrogen evolution reaction(HER)and decrease the ΔG value of ratedetermining step for oxygen evolution reaction(OER),thus enhancing the HER/OER catalytic activity.Electrochemical results confirm that Ni/MoO_(2)@CN exhibits good activity for HER(ƞ_(-10)=33 mV,ƞ_(-1000)=267 mV)and OER(ƞ_(10)=250 mV,ƞ_(1000)=420 mV).It shows a low potential of 1.86 V at 1000 mA cm^(−2) for WS in 6.0 M KOH solution at 60℃ and can steadily operate for 330 h.This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites,faster mass diffusion,and bubbles release.This work provides a unique idea for designing high efficiency catalytic materials for WS.
基金Project (No. 50477033) supported by the National Natural Science Foundation of China
文摘The new three-phase 5-level current-source inverter (CSI) proposed in this paper was developed by connecting three separate single-phase 5-level CSIs in series, and its operational principle was analyzed. There are two major problems existing in current-source multilevel inverters, one is the complex PWM control method (2-logic to 3-logic conversion), and the other is the problem of current-unbalance between different levels. A simple current-balance control method via DC current feedback is applied in each single-phase 5-level CSI cell to implement the current-balance control between different levels. And to reduce the output current harmonics, POD PWM control technique was used. Simulation and experimental results showed that this new three-phase 5-level CSI topology operates correctly.
基金Projected supported by the National Natural Science Foundation of China(Nos.11502123 and11262012)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2015JQ01)
文摘A three-phase confocal elliptical cylinder model is proposed to analyze micromechanics of one-dimensional hexagonal piezoelectric quasicrystal (PQC) compos- ites. Exact solutions of the phonon, phason, and electric fields are obtained by using the conformal mapping combined with the Laurent expansion technique when the model is subject to far-field anti-plane mechanical and in-plane electric loadings. The effective elec- troelastic constants of several different composites made up of PQC, quasicrystal (QC), and piezoelectric (PE) materials are predicted by the generalized self-consistent method. Numerical examples are conducted to show the effects of the volume fraction and the cross-sectional shape of inclusion (or fiber) on the effective electroelastic constants of these composites. Compared with other micromechanical methods, the generalized self- consistent and Mori-Tanaka methods can predict the effective electroelastic constants of the composites consistently.
文摘The present work is concerned with the solution of a problem on thermoelastic interactions in a functional graded material due to thermal shock in the context of the fractional order three-phase lag model. The governing equations of fractional order generalized thermoelasticity with three-phase lag model for functionally graded materials(FGM)(i.e., material with spatially varying material properties) are established. The analytical solution in the transform domain is obtained by using the eigenvalue approach.The inversion of Laplace transform is done numerically. The graphical results indicate that the fractional parameter has significant effects on all the physical quantities. Thus, we can consider the theory of fractional order generalized thermoelasticity an improvement on studying elastic materials.
基金This work was supported by the National Basic Research Program of China (2005CB221205)
文摘A three-phase reactor mathematical model was set up to simulate and design a three-phase bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas, considering both the influence of part inert carrier backmixing on transfer and the influence of catalyst grain sedimentation on reaction. On the basis of this model, the influences of the size and reaction conditions of a 100000 t/a DME reactor on capacity were investigated. The optimized size of the 10000 t/a DME synthesis reactor was proposed as follows: diameter 3.2 m, height 20 m, built-in 400 tube heat exchanger (Ф 38×2 mm), and inert heat carrier paraffin oil 68 t and catalyst 34.46 t. Reaction temperature and pressure were important factors influencing the reaction conversion for different size reactors. Under the condition of uniform catalyst concentration distribution, higher pressure and temperature were proposed to achieve a higher production capacity of DME. The best ratio of fresh syngas for DME synthesis was 2.04.
基金supported by the Natural Science Foundation Project of CQ CSTC (No. 2010BB7421)
文摘The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger- Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.
文摘Three-phase centrifuge was used to process oily sludge,and the requirement of mud,oil and water three-phase separation was satisfied through the optimization of parameters. The results showed that when the input quantity was lower than 5 m^3/h,the optimal operation parameters of the three-phase centrifuge are shown as follows: the frequency of the main motor and vice motor was 33 and 30 Hz respectively,and the flocculant flow was 0. 7 m^3/h,while the oily sludge temperature was 55 ℃. Water content in the separated sludge decreased from 98% to lower than 70%,and the goal of reduction and harmless treatment of oily sludge could be achieved,which could provide essential conditions for subsequent resource utilization and could be used to guide industrial production.
基金supported by the National Natural Science Foundation of China(U21A20332,52103226,52202275,52203314,and 12204253)the Distinguished Young Scholars Fund of Jiangsu Province(BK20220061)the Fellowship of China Postdoctoral Science Foundation(2021 M702382)。
文摘As an alternative to conventional energy conversion and storage reactions,gas-involved electrochemical reactions,including the carbon dioxide reduction reaction(CO_(2)RR),nitrogen reduction reaction(NRR)and hydrogen evolution reaction(HER),have become an emerging research direction and have gained increasing attention due to their advantages of environmental friendliness and sustainability.Various studies have been designed to accelerate sluggish kinetics but with limited results.Most of them promote the reaction by modulating the intrinsic properties of the catalyst,ignoring the synergistic effect of the reaction as a whole.Due to the introduction of gas,traditional liquid-solid two-phase reactions are no longer applicable to future research.Since gas-involved electrochemical reactions mostly occur at the junctions of gaseous reactants,liquid electrolytes and solid catalysts,the focus of future research on reaction kinetics should gradually shift to three-phase reaction interfaces.In this review,we briefly introduce the formation and constraints of the three-phase interface and propose three criteria to judge its merit,namely,the active site,mass diffusion and electron mass transfer.Subsequently,a series of modulation methods and relevant works are discussed in detail from the three improvement directions of‘exposing more active sites,promoting mass diffusion and accelerating electron transfer’.Definitively,we provide farsighted insights into the understanding and research of three-phase interfaces in the future and point out the possible development direction of future regulatory methods,hoping that this review can broaden the future applications of the three-phase interface,including but not limited to gas-involved electrochemical reactions.
基金Supported by the National Natural Science Foundation of China (No. 29706006) and the General Corporation of Petrochemical Engineering of China (No.X598021).
文摘The local gas-phase flow characteristics such as local gas holdup(εg), local bubble velocity (V_b) and local bubble mean diameter(d_b) at a specified point in a gas-liquid-solid three-phase reversedflow jet loop reactor was experimentally investigated by a five-pointconductivity probe. The effects of gas jet flow rate, liquid jet flowrate, solid loading, nozzle diameter and axial position on the localεg, V_b and d_b profiles were discussed. The presence of solids atlow solid concentrations not only increased the local εg and V_b,but also decreased the local d_b. The optimum solid loading for themaximum local εg and V_b together with the minimum local d_b was0.16×10^-3 m^3, corresponding to a solid volume fraction ε_S=2.5/100.