The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the...The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the unbalance occurs,the safe operation of the electrical equipment will be seriously jeopardized.This paper proposes a Hierarchical Temporal Memory(HTM)-based three-phase unbalance prediction model consisted by the encoder for binary coding,the spatial pooler for frequency pattern learning,the temporal pooler for pattern sequence learning,and the sparse distributed representations classifier for unbalance prediction.Following the feasibility of spatial-temporal streaming data analysis,we adopted this brain-liked neural network to a real-time prediction for power load.We applied the model in five cities(Tangshan,Langfang,Qinhuangdao,Chengde,Zhangjiakou)of north China.We experimented with the proposed model and Long Short-term Memory(LSTM)model and analyzed the predict results and real currents.The results show that the predictions conform to the reality;compared to LSTM,the HTM-based prediction model shows enhanced accuracy and stability.The prediction model could serve for the overload warning and the load planning to provide high-quality power grid operation.展开更多
Low-voltage distribution systems in our country are mostly used in agricultural loads and household loads. The value and using time of these kinds of loads are uncontrollable, which lead to the three-phase imbalance i...Low-voltage distribution systems in our country are mostly used in agricultural loads and household loads. The value and using time of these kinds of loads are uncontrollable, which lead to the three-phase imbalance in low-voltage distribution system, and seriously affect the quality of power supply. A new type of the commutation system and an improved quantum genetic algorithm (IQGA) are proposed in the paper. At last, the rationality and the efficiency of the method are verified by a practical example.展开更多
The focus of this paper is to present performance indices for unbalance radial feeder having different characteristic and composition of time varying static ZIP load models. These provide a framework for benchmarking ...The focus of this paper is to present performance indices for unbalance radial feeder having different characteristic and composition of time varying static ZIP load models. These provide a framework for benchmarking of distribution automation projects. 15 minutes characteristics time interval for load flow and load modeling are considered to meet smart grid implementation criterion. A forward-backward sweep method is employed for load flow solution. Developed performance indices were illustrated on modified IEEE 37 node test feeder. Performance indices are useful for analysis, operational, planning and integration of stochastic renewable sources.展开更多
One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing...One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.展开更多
The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV volta...The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.展开更多
Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth le...Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.展开更多
This paper presents a TOPF (three-phase optimal power flow) model that represents photovoltaic systems. The PV plant is modeled in the TOPF as active and reactive power source. Reactive power can be generated or abs...This paper presents a TOPF (three-phase optimal power flow) model that represents photovoltaic systems. The PV plant is modeled in the TOPF as active and reactive power source. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The reduction of unbalance voltage and losses in the distribution systems is obtained by actions of reactive power control of the inverter. The TOPF is formulated by current balance equations and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems for different scenarios of solar irradiance and temperature, thus providing a detailed view of the impact of photovoltaic distributed generation.展开更多
The increasing integration of distributed household photovoltaics(PVs)and electric vehicles(EVs)may further ag gravate voltage violations and unbalance of low-voltage distribu tion networks(LVDNs).DC distribution netw...The increasing integration of distributed household photovoltaics(PVs)and electric vehicles(EVs)may further ag gravate voltage violations and unbalance of low-voltage distribu tion networks(LVDNs).DC distribution networks can increase the accommodation of PVs and EVs and mitigate mutilple pow er quality problems by the flexible power regulation capability of voltage source converters.This paper proposes schemes to es tablish hybrid AC/DC LVDNs considering the conversion of the existing three-phase four-wire low-voltage AC systems to DC op eration.The characteristics and DC conversion constraints of typical LVDNs are analyzed.In addition,converter configura tions for typical LVDNs are proposed based on the three-phase four-wire characteristics and quantitative analysis of various DC configurations.Moreover,an optimal planning method of hybrid AC/DC LVDNs is proposed,which is modeled as a bi-level programming model considering the annual investments and three-phase unbalance.Simulations are conducted to verify the effectiveness of the proposed optimal planning method.Sim ulation results show that the proposed optimal planning method can increase the integration of PVs while simultaneously reduc ing issues related to voltage violation and unbalance.展开更多
Microgrid(MG) is generally developed at utility terminal which contains lots of unbalanced loads and distributed generations(DGs). The interaction between MG and the unbalance loads or DGs will degrades the control pe...Microgrid(MG) is generally developed at utility terminal which contains lots of unbalanced loads and distributed generations(DGs). The interaction between MG and the unbalance loads or DGs will degrades the control performance of interfaced inverter in MG and dramatically leads to MG voltage unbalance. In this paper, a negative-sequence compensation based three-phase voltage unified correction strategy is proposed. While MG operates in islanded mode, a positive virtual impedance control is used to eliminate the negative voltage resulted from the negative-sequence current,and then a positive-sequence voltage control loop and negative-sequence control loop are used to improve the inverter control performance. While MG operates in grid-tied mode,the inverter operates as a negative-sequence current source to compensate the negative-sequence currents of loads to guarantee the point of common coupling(PCC) voltage balance.By using the proposed strategy, the voltage control performance of inverter can be improved;the MG power quality can be enhanced significantly. Simulation and experimental results verify the effectiveness of the proposed method.展开更多
基金This study is supported by the National Natural Science Foundation of China(No.61801019).
文摘The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the unbalance occurs,the safe operation of the electrical equipment will be seriously jeopardized.This paper proposes a Hierarchical Temporal Memory(HTM)-based three-phase unbalance prediction model consisted by the encoder for binary coding,the spatial pooler for frequency pattern learning,the temporal pooler for pattern sequence learning,and the sparse distributed representations classifier for unbalance prediction.Following the feasibility of spatial-temporal streaming data analysis,we adopted this brain-liked neural network to a real-time prediction for power load.We applied the model in five cities(Tangshan,Langfang,Qinhuangdao,Chengde,Zhangjiakou)of north China.We experimented with the proposed model and Long Short-term Memory(LSTM)model and analyzed the predict results and real currents.The results show that the predictions conform to the reality;compared to LSTM,the HTM-based prediction model shows enhanced accuracy and stability.The prediction model could serve for the overload warning and the load planning to provide high-quality power grid operation.
文摘Low-voltage distribution systems in our country are mostly used in agricultural loads and household loads. The value and using time of these kinds of loads are uncontrollable, which lead to the three-phase imbalance in low-voltage distribution system, and seriously affect the quality of power supply. A new type of the commutation system and an improved quantum genetic algorithm (IQGA) are proposed in the paper. At last, the rationality and the efficiency of the method are verified by a practical example.
文摘The focus of this paper is to present performance indices for unbalance radial feeder having different characteristic and composition of time varying static ZIP load models. These provide a framework for benchmarking of distribution automation projects. 15 minutes characteristics time interval for load flow and load modeling are considered to meet smart grid implementation criterion. A forward-backward sweep method is employed for load flow solution. Developed performance indices were illustrated on modified IEEE 37 node test feeder. Performance indices are useful for analysis, operational, planning and integration of stochastic renewable sources.
文摘One of the very important functions of three-phase inverter is to maintain the symmetric three-phase output voltage when the three-phase loads are unbalanced. Although the traditional symmetrical component decomposing and superimpose theory can keep the voltage balance through compensating the positive-, negative- and zero-sequence components of the output voltage of inverter, however, this method is time-consuming and not suitable for control. Aiming at high power medium frequency inverter source, a P+Resonant (Proportion and Resonant) controller which ensured a balanced three phase output voltage under unbalanced load is proposed in this paper. The regulator was proved to be applicable to both three-phase three-wire system and three-phase four-wire system and developed two methods of realization. The simulation results verified that this method can suppressed effectively the output voltage distorted caused by the unbalanced load and attained a high quality voltage waveforms.
文摘The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.
文摘Z-source inverter can boost the voltage of the DC-side, allow the two switches of the same bridge arm conducting at the same time and it has some other advantages. The zero-sequence current flows through the fourth leg of the three-phase four-leg inverter so the three-phase four-leg inverter can work with unbalanced load. This paper presents a Z-source three-phase four-leg inverter which combines a Z-source network with three-phase four-leg inverter. The circuit uses simple SPWM modulation technique and the fourth bridge arm uses fully compensated control method. The inverter can maintain a symmetrical output voltage when the proposed scheme under the unbalanced load.
文摘This paper presents a TOPF (three-phase optimal power flow) model that represents photovoltaic systems. The PV plant is modeled in the TOPF as active and reactive power source. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. The reduction of unbalance voltage and losses in the distribution systems is obtained by actions of reactive power control of the inverter. The TOPF is formulated by current balance equations and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems for different scenarios of solar irradiance and temperature, thus providing a detailed view of the impact of photovoltaic distributed generation.
基金supported by the National Key Research and Development Program of China(No.2019YFE0118400).
文摘The increasing integration of distributed household photovoltaics(PVs)and electric vehicles(EVs)may further ag gravate voltage violations and unbalance of low-voltage distribu tion networks(LVDNs).DC distribution networks can increase the accommodation of PVs and EVs and mitigate mutilple pow er quality problems by the flexible power regulation capability of voltage source converters.This paper proposes schemes to es tablish hybrid AC/DC LVDNs considering the conversion of the existing three-phase four-wire low-voltage AC systems to DC op eration.The characteristics and DC conversion constraints of typical LVDNs are analyzed.In addition,converter configura tions for typical LVDNs are proposed based on the three-phase four-wire characteristics and quantitative analysis of various DC configurations.Moreover,an optimal planning method of hybrid AC/DC LVDNs is proposed,which is modeled as a bi-level programming model considering the annual investments and three-phase unbalance.Simulations are conducted to verify the effectiveness of the proposed optimal planning method.Sim ulation results show that the proposed optimal planning method can increase the integration of PVs while simultaneously reduc ing issues related to voltage violation and unbalance.
基金supported by the project of China Electric Power Research Institute(No.GYB51201404488)National High Technology Research and Development Program of China(863 Program)(No.2015AA050606)
文摘Microgrid(MG) is generally developed at utility terminal which contains lots of unbalanced loads and distributed generations(DGs). The interaction between MG and the unbalance loads or DGs will degrades the control performance of interfaced inverter in MG and dramatically leads to MG voltage unbalance. In this paper, a negative-sequence compensation based three-phase voltage unified correction strategy is proposed. While MG operates in islanded mode, a positive virtual impedance control is used to eliminate the negative voltage resulted from the negative-sequence current,and then a positive-sequence voltage control loop and negative-sequence control loop are used to improve the inverter control performance. While MG operates in grid-tied mode,the inverter operates as a negative-sequence current source to compensate the negative-sequence currents of loads to guarantee the point of common coupling(PCC) voltage balance.By using the proposed strategy, the voltage control performance of inverter can be improved;the MG power quality can be enhanced significantly. Simulation and experimental results verify the effectiveness of the proposed method.