In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit ...In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively.展开更多
The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc...The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.展开更多
This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors ...This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors (TSIFs) at the tips of long and short cracks are calculated using a singular integral equation technique. The critical thermal shock △Tc that causes crack initiation is calculated using a stress intensity factor criterion. Numerical examples of TSIFs and △Tc for an Al2O3/Si3N4 FGM plate are presented to illustrate the effects of thermal property gradation, crack spacing and crack length ratio on the TSIFs and △Tc. It is found that for a given crack length ratio, the TSIFs at the tips of both long and short cracks can be reduced significantly and △Tc can be enhanced by introducing appropriate material gradation. The TSIFs also decrease dramatically with a decrease in crack spacing. The TSIF at the tips of short cracks may be higher than that for the long cracks under certain crack geometry conditions. Hence, the short cracks instead of long cracks may first start to grow under the thermal shock loading.展开更多
The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This pr...The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks.展开更多
By introducing the functional theory into the calculation of electric double layer (EDL) interaction, the interaction energies of two parallel plates were calculated respectively at low, moderate, and high potential...By introducing the functional theory into the calculation of electric double layer (EDL) interaction, the interaction energies of two parallel plates were calculated respectively at low, moderate, and high potentials. Compared with the results of two existing methods, Debye-Hückel and Langmuir methods, which are applicable just to the critical potentials and perform poorly in the intermediate potential, the functional approach not only has much simpler expression of the EDL interaction energy, but also performs well in the entire range of potentials.展开更多
The paper presents a parallel ATPG algorithm - PTGBP, which aims at decreasing the complexity of the ATPG by partitioning circuit under test (CUT) to big function blocks (BFB) and processing them parallelly. PTGBP ado...The paper presents a parallel ATPG algorithm - PTGBP, which aims at decreasing the complexity of the ATPG by partitioning circuit under test (CUT) to big function blocks (BFB) and processing them parallelly. PTGBP adopts hybrid circuit mode and hybrid fault model, and organizes the parallel course in term of master/slave mode. Master processor loads the whole netlist of CUT based on BFB, every slave processor loads logic level (gate/function block/basic logic units) netlist of a BFB. Test generation (TG) uses BFB input/output s-a-0/s-a-1 fault model; fault simulation uses logic level single stuck fault model. Master controls the PTGBP’s running course and ensures the correctness of its running result; slaves provide the results of fault sensitization compatible computation and fault simulation to master parallelly. PTGBP algorithm is under implementation.展开更多
The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, wher...The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.展开更多
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting....In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.展开更多
The behavior of two parallel symmetry permeable cracks in functionally graded piezoelectric materials subjected to an anti-plane shear loading was investigated. To make the analysis tractable, it was assumed that the ...The behavior of two parallel symmetry permeable cracks in functionally graded piezoelectric materials subjected to an anti-plane shear loading was investigated. To make the analysis tractable, it was assumed that the material properties varied exponentially with coordinate vertical to the crack. By using the Fourier transform, the problem could be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. The normalized stress and electrical displacement intensity factors were determined for different geometric and property parameters for permeable electric boundary conditions. Numerical examples were provided to show the effect of the geometry of the interacting cracks and the functionally graded material parameter upon the stress intensity factors of cracks.展开更多
The present work deals with the behavior of fermions moving in a static magnetic induction and a time-harmonic electric field, both oriented along Oz. For the ultra-relativistic particles described by a Heun double co...The present work deals with the behavior of fermions moving in a static magnetic induction and a time-harmonic electric field, both oriented along Oz. For the ultra-relativistic particles described by a Heun double confluent equation, we derive the corresponding wave functions and the conserved current density components.展开更多
Characteristic Basis Function Method (CBFM) is a novel approach for analyzing the ElectroMagnetic (EM) scattering from electrically large objects. Based on dividing the studied object into small blocks, the CBFM is su...Characteristic Basis Function Method (CBFM) is a novel approach for analyzing the ElectroMagnetic (EM) scattering from electrically large objects. Based on dividing the studied object into small blocks, the CBFM is suitable for parallel computing. In this paper, a static load balance parallel method is presented by combining Message Passing Interface (MPI) with Adaptively Modified CBFM (AMCBFM). In this method, the object geometry is partitioned into distinct blocks, and the serial number of blocks is sent to related nodes according to a certain rule. Every node only needs to calculate the information on local blocks. The obtained results confirm the accuracy and efficiency of the proposed method in speeding up solving large electrical scale problems.展开更多
在交直流混合微电网中,并联互联变流器(parallel bidirectional power converters,BPCs)可以实现大容量的功率传输,以满足新型电力系统在空间上的供需匹配。如何在占用更少资源的同时协调控制BPCs实现功率的比例共享,是交直流混合微电网...在交直流混合微电网中,并联互联变流器(parallel bidirectional power converters,BPCs)可以实现大容量的功率传输,以满足新型电力系统在空间上的供需匹配。如何在占用更少资源的同时协调控制BPCs实现功率的比例共享,是交直流混合微电网中BPCs控制的研究难点。因此,该文设计了一种针对BPCs的事件触发改进一致性协调控制策略。以归一化下垂控制为基础,提出了改进的比例功率一致性算法,实现BPCs间高精度比例功率共享。在此之上,基于BPCs比例功率误差建立事件触发改进一致性算法,并预设触发函数的预判阈值,从而降低系统在稳定状态下的通信次数。最后进行仿真对比分析,结果表明该文提出的方法相比基本一致性算法通信量减少98.35%;同时,与现有控制策略相比,该文提出的方法有着更好的控制性能。展开更多
外部函数接口(FFI)是解决一种编程语言调用其他语言函数库的主要方法。针对使用FFI技术时需要大量人工编码的问题,提出自动化外部函数接口生成(AFIG)方法。该方法利用基于抽象语法树的源码逆向分析技术,从被封装的库文件中精准提取出用...外部函数接口(FFI)是解决一种编程语言调用其他语言函数库的主要方法。针对使用FFI技术时需要大量人工编码的问题,提出自动化外部函数接口生成(AFIG)方法。该方法利用基于抽象语法树的源码逆向分析技术,从被封装的库文件中精准提取出用于描述函数接口信息的多语言融合的统一表示。基于此统一表示,不同平台的代码生成器可利用多语言转换规则矩阵,全自动化地生成不同平台的FFI相关代码。为解决FFI代码生成中的效率低下问题,设计了一种基于依赖分析的任务聚合策略,通过把存在依赖的任务聚合为新的任务,有效消除了FFI代码任务在并行下的阻塞与死锁,从而实现任务在多核系统下的可扩展与负载均衡。实验结果表明:与人工编码相比,AFIG方法减少了FFI开发中98.14%的开发编码量以及41.95%的测试编码量;与现有的SWIG(Simplified Wrapper and Interface Generator)方法相比,在同等任务下可减少61.27%的开发成本;且生成效率随着计算资源的增加呈线性增长。展开更多
Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximati...Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.展开更多
基金supported by the National Research Foundation of Korea(Nos.NRF-2019M1A7A1A03087579 and NRF-2021R1I1A1A01050312)the Ministry of Trade,Industry&Energy(Nos.20011226 and 20009415)。
文摘In general,as the radio frequency(RF)power increases in a capacitively coupled plasma(CCP),the power transfer efficiency decreases because the resistance of the CCP decreases.In this work,a parallel resonance circuit is applied to improve the power transfer efficiency at high RF power,and the effect of the parallel resonance on the electron energy distribution function(EEDF)is investigated in a 60 MHz CCP.The CCP consists of a power feed line,the electrodes,and plasma.The reactance of the CCP is positive at 60 MHz and acts like an inductive load.A vacuum variable capacitor(VVC)is connected in parallel with the inductive load,and then the parallel resonance between the VVC and the inductive load can be achieved.As the capacitance of the VVC approaches the parallel resonance condition,the equivalent resistance of the parallel circuit is considerably larger than that without the VVC,and the current flowing through the matching network is greatly reduced.Therefore,the power transfer efficiency of the discharge is improved from 76%,70%,and 68%to 81%,77%,and 76%at RF powers of 100 W,150 W,and 200 W,respectively.At parallel resonance conditions,the electron heating in bulk plasma is enhanced,which cannot be achieved without the VVC even at the higher RF powers.This enhancement of electron heating results in the evolution of the shape of the EEDF from a biMaxwellian distribution to a distribution with the smaller temperature difference between high-energy electrons and low-energy electrons.Due to the parallel resonance effect,the electron density increases by approximately 4%,18%,and 21%at RF powers of 100 W,150 W,and 200 W,respectively.
基金supported by the National Natural Science Foundation of China(21627813)。
文摘The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.
文摘This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors (TSIFs) at the tips of long and short cracks are calculated using a singular integral equation technique. The critical thermal shock △Tc that causes crack initiation is calculated using a stress intensity factor criterion. Numerical examples of TSIFs and △Tc for an Al2O3/Si3N4 FGM plate are presented to illustrate the effects of thermal property gradation, crack spacing and crack length ratio on the TSIFs and △Tc. It is found that for a given crack length ratio, the TSIFs at the tips of both long and short cracks can be reduced significantly and △Tc can be enhanced by introducing appropriate material gradation. The TSIFs also decrease dramatically with a decrease in crack spacing. The TSIF at the tips of short cracks may be higher than that for the long cracks under certain crack geometry conditions. Hence, the short cracks instead of long cracks may first start to grow under the thermal shock loading.
基金Project supported by the National Natural Science Foundation of China(Nos.11002041 and11272105)the Key Laboratory Opening Funding of Advanced Composites in Special Environment(No.HIT.KLOF.2009032)the Research Fund for the Doctoral Program of Higher Education ofChina(No.20092302110006)
文摘The Schmidt method is adopted to investigate the fracture problem of multiple parallel symmetric and permeable finite length mode-III cracks in a functionally graded piezoelectric/piezomagnetic material plane. This problem is formulated into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. In order to obtain the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials. The results show that the stress, the electric displacement, and the magnetic flux intensity factors of cracks depend on the crack length, the functionally graded parameter, and the distance among the multiple parallel cracks. The crack shielding effect is also obviously presented in a functionally graded piezoelectric/piezomagnetic material plane with mul- tiple parallel symmetric mode-III cracks.
基金This work was supported by the National Natural Science Foundation of China (No.20676051 and No.20573048) and the Important Construction Project (category A) of Shanghai Jiao Tong University (No.AE150085).
文摘By introducing the functional theory into the calculation of electric double layer (EDL) interaction, the interaction energies of two parallel plates were calculated respectively at low, moderate, and high potentials. Compared with the results of two existing methods, Debye-Hückel and Langmuir methods, which are applicable just to the critical potentials and perform poorly in the intermediate potential, the functional approach not only has much simpler expression of the EDL interaction energy, but also performs well in the entire range of potentials.
基金Supported by National Natural Science Founding of China.
文摘The paper presents a parallel ATPG algorithm - PTGBP, which aims at decreasing the complexity of the ATPG by partitioning circuit under test (CUT) to big function blocks (BFB) and processing them parallelly. PTGBP adopts hybrid circuit mode and hybrid fault model, and organizes the parallel course in term of master/slave mode. Master processor loads the whole netlist of CUT based on BFB, every slave processor loads logic level (gate/function block/basic logic units) netlist of a BFB. Test generation (TG) uses BFB input/output s-a-0/s-a-1 fault model; fault simulation uses logic level single stuck fault model. Master controls the PTGBP’s running course and ensures the correctness of its running result; slaves provide the results of fault sensitization compatible computation and fault simulation to master parallelly. PTGBP algorithm is under implementation.
基金Project(61372136) supported by the National Natural Science Foundation of China
文摘The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.
文摘In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors.
基金Sponsred by the Natural Science Foundation with Excellent Young Investigators of Heilongjiang Province(Grant No.JC04 -08)the Natural Science Foundation of Heilongjiang Province(Grant No.A0301)+1 种基金the National Science Foundation with Excellent Young Investigators (Grant No.10325208)the National Natural Science Key Item Foundation of China (Grant No.10432030).
文摘The behavior of two parallel symmetry permeable cracks in functionally graded piezoelectric materials subjected to an anti-plane shear loading was investigated. To make the analysis tractable, it was assumed that the material properties varied exponentially with coordinate vertical to the crack. By using the Fourier transform, the problem could be solved with the help of two pairs of dual integral equations, in which the unknown variables were the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the displacement on the crack surfaces was expanded in a series of Jacobi polynomials. The normalized stress and electrical displacement intensity factors were determined for different geometric and property parameters for permeable electric boundary conditions. Numerical examples were provided to show the effect of the geometry of the interacting cracks and the functionally graded material parameter upon the stress intensity factors of cracks.
文摘The present work deals with the behavior of fermions moving in a static magnetic induction and a time-harmonic electric field, both oriented along Oz. For the ultra-relativistic particles described by a Heun double confluent equation, we derive the corresponding wave functions and the conserved current density components.
文摘Characteristic Basis Function Method (CBFM) is a novel approach for analyzing the ElectroMagnetic (EM) scattering from electrically large objects. Based on dividing the studied object into small blocks, the CBFM is suitable for parallel computing. In this paper, a static load balance parallel method is presented by combining Message Passing Interface (MPI) with Adaptively Modified CBFM (AMCBFM). In this method, the object geometry is partitioned into distinct blocks, and the serial number of blocks is sent to related nodes according to a certain rule. Every node only needs to calculate the information on local blocks. The obtained results confirm the accuracy and efficiency of the proposed method in speeding up solving large electrical scale problems.
文摘在交直流混合微电网中,并联互联变流器(parallel bidirectional power converters,BPCs)可以实现大容量的功率传输,以满足新型电力系统在空间上的供需匹配。如何在占用更少资源的同时协调控制BPCs实现功率的比例共享,是交直流混合微电网中BPCs控制的研究难点。因此,该文设计了一种针对BPCs的事件触发改进一致性协调控制策略。以归一化下垂控制为基础,提出了改进的比例功率一致性算法,实现BPCs间高精度比例功率共享。在此之上,基于BPCs比例功率误差建立事件触发改进一致性算法,并预设触发函数的预判阈值,从而降低系统在稳定状态下的通信次数。最后进行仿真对比分析,结果表明该文提出的方法相比基本一致性算法通信量减少98.35%;同时,与现有控制策略相比,该文提出的方法有着更好的控制性能。
文摘外部函数接口(FFI)是解决一种编程语言调用其他语言函数库的主要方法。针对使用FFI技术时需要大量人工编码的问题,提出自动化外部函数接口生成(AFIG)方法。该方法利用基于抽象语法树的源码逆向分析技术,从被封装的库文件中精准提取出用于描述函数接口信息的多语言融合的统一表示。基于此统一表示,不同平台的代码生成器可利用多语言转换规则矩阵,全自动化地生成不同平台的FFI相关代码。为解决FFI代码生成中的效率低下问题,设计了一种基于依赖分析的任务聚合策略,通过把存在依赖的任务聚合为新的任务,有效消除了FFI代码任务在并行下的阻塞与死锁,从而实现任务在多核系统下的可扩展与负载均衡。实验结果表明:与人工编码相比,AFIG方法减少了FFI开发中98.14%的开发编码量以及41.95%的测试编码量;与现有的SWIG(Simplified Wrapper and Interface Generator)方法相比,在同等任务下可减少61.27%的开发成本;且生成效率随着计算资源的增加呈线性增长。
文摘Based on the 65nm CMOS process,a novel parallel RLC coupling interconnect analytical model is presented synthetically considering parasitical capacitive and parasitical inductive effects. Applying function approximation and model order-reduction to the model, we derive a closed-form and time-domain waveform for the far-end crosstalk of a victim line under ramp input transition. For various interconnect coupling sizes, the proposed RLC coupling analytical model enables the estimation of the crosstalk voltage within 2.50% error compared with Hspice simulation in a 65nm CMOS process. This model can be used in computer-aided-design of nanometer SOCs.