Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively....Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.展开更多
It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liq...It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.展开更多
Consider a two-phase liquid-solid coupling effect, using Euler - Euler two-fluid model is solved using standard viscous term with k- e model and the velocity pressure coupling a simple algorithm to simulate liquid-sol...Consider a two-phase liquid-solid coupling effect, using Euler - Euler two-fluid model is solved using standard viscous term with k- e model and the velocity pressure coupling a simple algorithm to simulate liquid-solid two-phase flow characteristics of the fluid flow method bed, the applicability of the model to assess the drag. Different effects of a two-stage flow characteristics of fluidized bed flow characteristics, fluid and operating conditions affect the physical properties of the paper. We found from the simulation is the use of different drag coefficient models will greatly affect the results, which drag force model Syamlal - O' Brien is more suited to study the coupling characteristics of liquid flow in a fluidized bed of solid than Gidaspow. And velocity of the inert particles increase with the viscosity of the liquid increase. Further, the maximum speed of the inert particles in a fluidized bed by a central, which means the settling velocity in the fluidized bed of inert particles is the slowest; increasing liquid density and lead to increased speed of the inert particles; volume of the inert particles Score changes can also affect the speed of the particle velocity distribution, and there is no linear relationship.展开更多
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr...A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.展开更多
The local solids holdup and local particle velocity in a Countercurrent Liquid-upward and Solids-downward Fluidized Bed(CCLSFB)were investigated in details using optical fiber probes with two different models in a Ple...The local solids holdup and local particle velocity in a Countercurrent Liquid-upward and Solids-downward Fluidized Bed(CCLSFB)were investigated in details using optical fiber probes with two different models in a Plexiglas column of 1.5 m in height and 7.0 cm in inner diameter.A new flow regime map including fluidized bed,transition,and flooding regimes was established.The axial solids holdup distribution is almost uniform at low liquid velocity and/or solids flowrate and becomes less uniform with higher solids holdup at the top of the column after the operating liquid velocity is reaching the flooding velocity.The radial solids holdup profile is also nearly flat with a slightly lower solids holdup in the near-wall region at low liquid velocity and solids flowrate but becomes nonuniform as the operating liquid velocity approaches the flooding velocity.Two equations were also proposed to correlate radial local solids holdups.The descending particle velocity in CCLSFB increases with the decrease of the liquid velocity and the increase of the solids flowrate.A generally uniform particle velocity distribution was found in the axial direction,as well as in the radial direction except for a small decrease near the wall.These results on the local solids flow structure would provide basic information and theoretical supports for the design and industrial application of CCLSFB.展开更多
A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A com...A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,展开更多
An integrated model,namely the two-equation turbulent model,is introduced to simulate mass transfer in a liquid-solid circulating fluidized bed(LSCFB)riser.Protein desorption is simulated and the proposed model is val...An integrated model,namely the two-equation turbulent model,is introduced to simulate mass transfer in a liquid-solid circulating fluidized bed(LSCFB)riser.Protein desorption is simulated and the proposed model is validated.The protein concentration profiles simulated with this model agree well with published experimental results.This model enables direct determination of turbulent mass diffusivity,removing the need to empirically guess a constant turbulent Schmidt number for simulating mass transfer in a turbulent flow.This model is useful when the turbulent mass diffusivity is not available for simulating mass transfer in an LSCFB riser.展开更多
Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured ...Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured incipient]minimum fluidization liquid velocity (Umf) in the MFBs was 1.67 to 5.25 times higher than that calculated using the Ergun equation when the ratio of solid particle diameter to bed diameter varied from 0.017 to 0.091. The ratio of the Richardson-Zaki (R-Z) exponent obtained by fitting with experimental data to that calculated using the R-Z correlation varied from 0.92 to 0.55. A wider solid particle size distribution resulted in a smaller R-Z exponent. The influence of the solid particle material on Umf and R-Z exponent was negligible.展开更多
To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulati...To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulation analysis and separation experiments was used to analyze the fluidization characteristics and separation performance of the IILSFB.The results showed that there was upflow and downflow in the fluidized bed.The upflow was mainly composed of water flow,followed by light and heavy particles;on the other hand,the downflow was caused by the backflow of heavy particles that settled at the inclined section.In addition,the light particles that settled at the inclined section could return to the rising water flow under the action of secondary airflow.As the water velocity,separation time,and secondary gas velocity increased,the comprehensive separation efficiency of fine coal in the fluidized bed improved,while the value decreased as the feed quantity increased.This also indicated the order of importance for these four factors,i.e.,water velocity,separation time,feed quantity,and secondary gas velocity,on fluidisation.Furthermore,the comprehensive separation efficiency of 0.1-1 mm fine coal varied significantly with various factors,while that of∼0.1 mm and 1-3 mm fine coal was always at a low value.In the latter case,the classification process of the size fraction was significantly better than the separation process in the fluidized bed.Under optimal working conditions,an IILSFB was used to separate the fine coal(0.1-1 mm).The yield of clean coal was 37.95% with an ash content of 12.11%,and the possible error was 0.085 g/cm^(3),indicating that the IILSFB had good separation performance for 0.1-1 mm fine coal.展开更多
Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, ...Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, the behavior of monodisperse and binary liquid-solid fluidized beds of the same density but dif- ferent sizes is investigated using radioactive particle tracking (RPT) technique and a dense discrete phase model (DDPM). Experiments and simulations are performed in monodisperse fluidized beds containing two different sizes of glass beads (0.6 and I mm) and a binary fluidized bed of the same particles for vari- ous bed compositions. The results show that both RPT and DDPM can predict the mixing and segregation pattern in liquid-solid binary fluidized beds. The mean velocity predictions of DDPM are in good agree- ment with the experimental findings for both monodisperse and binary fluidized beds. However, the axial root mean square velocity predictions are only reasonable for bigger particles. Particle-particle interac- tions are found to be critical for predicting the flow behavior of solids in liquid-solid binary fluidized beds.展开更多
A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, ...A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, a step by step methodology is taken to study the effects of the interactions among the independent factors considered on the performance variables. A multilevel full factorial design with three levels of the two factors and five levels of the third factor has been studied. Various statistical models such as the linear, two-factor interaction, quadratic, and cubic models are tested. The model has been developed to predict responses, viz., average solids holdup and solids circulation rate. The validity of the developed regression model is verified using the analysis of variance. Furthermore, the model developed was compared with an experimental dataset to assess its adequacy and reliability. This detailed statistical design methodology for non-linear systems considered here provides a very important tool for design and optimization in a cost-effective approach展开更多
Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investi...Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investigate the solid holdup and distribution in three LSCFB systems with different heights.In addition to data obtained here,we also use a portion of data sets of LSCFB systems developed by Zheng(1999)and Liang et al.(1996).Model predictions are in good agreement with the experimental data in both radial and axial directions and at different normalized superficial liquid and solid velocities.The radial profiles of the solid holdup are approximately identical at a fixed average cross-sectional solid holdup for the three LSCFB systems studied.Statistical performance indicators including the mean absolute percentage error(6.19%)and correlation coefficient(0.985)are within an acceptable range.The results suggest that a MGGP modeling approach is suitable for predicting the solid holdup and distribution of a scaled-up LSCFB system.展开更多
The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influ...The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influence on the interstitial liquid phase, was used in combination with two-fluid models to simulate unsteady liquid-solid two-phase flows. We focus on local unsteady features predicted by the numerical models. The solid fraction power spectrum was analyzed. A typical flow pattern, such as core annular flow and particle back-mixing near the wall region of liquid-solid fluidized beds is obtained from this calculation. Effects of the restitution coefficient of particle-particle collisions on the distribution of granular pressure and temperature are discussed. Good agreement was achieved between the simulated results and experimental findings.展开更多
Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid ve...Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid velocity, and is reported to be only dependent on the liquid and particle properties. This study presents a new approach to calculate the onset velocity using CFD-DEM simulation of the particle residence time distribution (RTD). The onset velocity is identified from the intersection of the fitted lines of the particle mean residence time as a function of superficial liquid velocity. Our results are in reasonable agreement with experimental data. The simulation indicates that the onset velocity is infuenced by the density and size of particles and weakly affected by riser height and diameter, A power-law function is proposed to correlate the mean particle residence time with the superficial liquid velocity. The collisional parameters have a minor effect on the mean residence time of particles and the onset velocity, but influence the particle RTD, showing some humps and trailing. The particle RTD is found to be related to the particle trajectories, which may indicate the complex flow structure and underlying mechanisms of the particle RTD.展开更多
A double-tube cooler with liquid-solid circulating fluidization operation and corresponding parameter measuring system are developed to avoid fouling of inner walls of heat exchange tubes in a cryogenic temperature ex...A double-tube cooler with liquid-solid circulating fluidization operation and corresponding parameter measuring system are developed to avoid fouling of inner walls of heat exchange tubes in a cryogenic temperature external cooler of ammonium chloride solution in soda ash production.Wall-scaling prevention performance of the cooling process is experimentally evaluated using convection and overall coefficients,enhancement factor,wall temperature and fouling resistance.Effects of different volume fractions of added particles,particle size,superficial liquid velocity,and cooling medium temperature on heat transfer are examined.Under present conditions,convection coefficient of liquid-solid flow inside the tube of external cooler is higher than that of the liquid phase flow,increased by 0.7–2.8 times,enhancing cooling performance obviously.Convection coefficient initially increases and then decreases as the volume fraction of added particles increases,reaching its maximum value at a volume fraction of 2.0%.The wall-scaling prevention effect of glass beads mainly depends on the volume fraction of added particles;optimal anti-fouling effects are achieved when adding particles at a volume fraction of 2.0%,regardless of changes in superficial liquid velocity or cooling medium temperature.This study lays a foundation for industrial applications of this new technique of fluidized bed external coolers.展开更多
基金Supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP)GTL Technology Development Consortium (Korean National Oil Corp., Korea Gas Corp., Daelim Industrial Co. and Hyundai Engineering Co.) under "Energy Efficiency & Resources Programs" of the Ministry of Knowledge Economy, Republic of Korea
文摘Heat transfer characteristics between the immersed heater and the bed content were studied in the riser of a liquid-solid circulating fluidized bed, whose diameter and height were 0.102 m (ID) and 2.5 m, respectively. Effects of liquid velocity, particle size, surface tension of liquid phase and solid circulation rate on the overall heat transfer coefficient were examined. The heat transfer coefficient increased with increasing particle size or solid circulation rate due to the higher potential of particles to contact with the heater surface and promote turbulence near the heater surface. The value of heat transfer coefficient increased gradually with increase in the surface tension of liquid phase, due to the slight increase of solid holdup. The heat transfer coefficient increased with the liquid velocity even in the higher range, due to the solid circulation prevented the decrease in solid holdup, in contrast to that in the conventional liquid-solid fluidized beds. The values of heat transfer coefficient were well correlated in terms of dimensionless groups as well as operating variables.
基金Supported by the National Natural Science Foundation of China(No.29576251)
文摘It is found analytically that the parabolic radial profile of liquid velocity in cylindrical liquid-solid fluidized bed (LSFB) causes particles to circulate around some radial position. This is the main reason for liquid-phase axial dispersions. The liquid-phase axial dispersion is depressed as the liquid velocity presents a flatter Bessel radial profile in a converging taper LSFB. The void fraction increases with axial distance in converging taper LSFB. The behavior produces less liquid-phase axial dispersion. Experimental results show good coincidence.
文摘Consider a two-phase liquid-solid coupling effect, using Euler - Euler two-fluid model is solved using standard viscous term with k- e model and the velocity pressure coupling a simple algorithm to simulate liquid-solid two-phase flow characteristics of the fluid flow method bed, the applicability of the model to assess the drag. Different effects of a two-stage flow characteristics of fluidized bed flow characteristics, fluid and operating conditions affect the physical properties of the paper. We found from the simulation is the use of different drag coefficient models will greatly affect the results, which drag force model Syamlal - O' Brien is more suited to study the coupling characteristics of liquid flow in a fluidized bed of solid than Gidaspow. And velocity of the inert particles increase with the viscosity of the liquid increase. Further, the maximum speed of the inert particles in a fluidized bed by a central, which means the settling velocity in the fluidized bed of inert particles is the slowest; increasing liquid density and lead to increased speed of the inert particles; volume of the inert particles Score changes can also affect the speed of the particle velocity distribution, and there is no linear relationship.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL-ChE-18B03)the Municipal Science and Technology Commission of Tianjin (No. 2009ZCKFGX01900)
文摘A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.
文摘The local solids holdup and local particle velocity in a Countercurrent Liquid-upward and Solids-downward Fluidized Bed(CCLSFB)were investigated in details using optical fiber probes with two different models in a Plexiglas column of 1.5 m in height and 7.0 cm in inner diameter.A new flow regime map including fluidized bed,transition,and flooding regimes was established.The axial solids holdup distribution is almost uniform at low liquid velocity and/or solids flowrate and becomes less uniform with higher solids holdup at the top of the column after the operating liquid velocity is reaching the flooding velocity.The radial solids holdup profile is also nearly flat with a slightly lower solids holdup in the near-wall region at low liquid velocity and solids flowrate but becomes nonuniform as the operating liquid velocity approaches the flooding velocity.Two equations were also proposed to correlate radial local solids holdups.The descending particle velocity in CCLSFB increases with the decrease of the liquid velocity and the increase of the solids flowrate.A generally uniform particle velocity distribution was found in the axial direction,as well as in the radial direction except for a small decrease near the wall.These results on the local solids flow structure would provide basic information and theoretical supports for the design and industrial application of CCLSFB.
基金supported by the Discovery Grant and Engage Grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘A comprehensive study on the hydrodynamics in the downcomer of a liquid-solid circulating fluidized bed (LSCFB) is crucial in the control and optimization of the extraction process using an ion exchange LSCFB. A computational fluid dynamics model is proposed in this study to simulate the counter-current two-phase flow in the downcomer of the LSCFB. The model is based on the Eulerian-Eulerian approach incorporating the kinetic theory of granular flow. The predicted results agree well with our earlier experimental data. Furthermore, it is shown that the bed expansion of the particles in the downcomer is directly affected by the superfcial liquid velocity in downcomer and solids circulation rate. The model also predicts the residence time of solid particles in the downcomer using a pulse technique. It is demonstrated that the increase in the superficial liquid velocity decreases the solids dispersion in the downcomer of the LSCFB,
基金This work was supported by the Open Foundation of State Key Laboratory of Chemical Engineering(No.SKL-ChE-19B04).
文摘An integrated model,namely the two-equation turbulent model,is introduced to simulate mass transfer in a liquid-solid circulating fluidized bed(LSCFB)riser.Protein desorption is simulated and the proposed model is validated.The protein concentration profiles simulated with this model agree well with published experimental results.This model enables direct determination of turbulent mass diffusivity,removing the need to empirically guess a constant turbulent Schmidt number for simulating mass transfer in a turbulent flow.This model is useful when the turbulent mass diffusivity is not available for simulating mass transfer in an LSCFB riser.
文摘Expanded fluidization behavior in liquid-solid mini-fluidized beds (MFBs) was experimentally investigated using visual measurements. Wall effects in the liquid-solid MFBs were identified and explained. The measured incipient]minimum fluidization liquid velocity (Umf) in the MFBs was 1.67 to 5.25 times higher than that calculated using the Ergun equation when the ratio of solid particle diameter to bed diameter varied from 0.017 to 0.091. The ratio of the Richardson-Zaki (R-Z) exponent obtained by fitting with experimental data to that calculated using the R-Z correlation varied from 0.92 to 0.55. A wider solid particle size distribution resulted in a smaller R-Z exponent. The influence of the solid particle material on Umf and R-Z exponent was negligible.
基金the financial support by the National Natural Science Foundation of China(No.51774283,No.51904096,No.52004086)the research fund of Henan Key Laboratory for Green and Efficient Mining&Comprehensive Utilization of Mineral Resources(Henan Polytechnic University)(KCF202005)the research fund of Henan Key Laboratory of Coal Green Conversion(Henan Polytechnic University)(CGCF201906).
文摘To improve the adaptability of fluidized beds for fine coal separation,a new type of liquid-solid fluidized bed was constructed,i.e.,the inflatable-inclined liquid-solid fluidized bed(IILSFB).A combination of simulation analysis and separation experiments was used to analyze the fluidization characteristics and separation performance of the IILSFB.The results showed that there was upflow and downflow in the fluidized bed.The upflow was mainly composed of water flow,followed by light and heavy particles;on the other hand,the downflow was caused by the backflow of heavy particles that settled at the inclined section.In addition,the light particles that settled at the inclined section could return to the rising water flow under the action of secondary airflow.As the water velocity,separation time,and secondary gas velocity increased,the comprehensive separation efficiency of fine coal in the fluidized bed improved,while the value decreased as the feed quantity increased.This also indicated the order of importance for these four factors,i.e.,water velocity,separation time,feed quantity,and secondary gas velocity,on fluidisation.Furthermore,the comprehensive separation efficiency of 0.1-1 mm fine coal varied significantly with various factors,while that of∼0.1 mm and 1-3 mm fine coal was always at a low value.In the latter case,the classification process of the size fraction was significantly better than the separation process in the fluidized bed.Under optimal working conditions,an IILSFB was used to separate the fine coal(0.1-1 mm).The yield of clean coal was 37.95% with an ash content of 12.11%,and the possible error was 0.085 g/cm^(3),indicating that the IILSFB had good separation performance for 0.1-1 mm fine coal.
文摘Liquid-solid binary fluidized beds are widely used in many industries. However, the flow behavior of such beds is not well understood due to the lack of accurate experimental and numerical data. In the current study, the behavior of monodisperse and binary liquid-solid fluidized beds of the same density but dif- ferent sizes is investigated using radioactive particle tracking (RPT) technique and a dense discrete phase model (DDPM). Experiments and simulations are performed in monodisperse fluidized beds containing two different sizes of glass beads (0.6 and I mm) and a binary fluidized bed of the same particles for vari- ous bed compositions. The results show that both RPT and DDPM can predict the mixing and segregation pattern in liquid-solid binary fluidized beds. The mean velocity predictions of DDPM are in good agree- ment with the experimental findings for both monodisperse and binary fluidized beds. However, the axial root mean square velocity predictions are only reasonable for bigger particles. Particle-particle interac- tions are found to be critical for predicting the flow behavior of solids in liquid-solid binary fluidized beds.
文摘A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, a step by step methodology is taken to study the effects of the interactions among the independent factors considered on the performance variables. A multilevel full factorial design with three levels of the two factors and five levels of the third factor has been studied. Various statistical models such as the linear, two-factor interaction, quadratic, and cubic models are tested. The model has been developed to predict responses, viz., average solids holdup and solids circulation rate. The validity of the developed regression model is verified using the analysis of variance. Furthermore, the model developed was compared with an experimental dataset to assess its adequacy and reliability. This detailed statistical design methodology for non-linear systems considered here provides a very important tool for design and optimization in a cost-effective approach
基金support provided by King Abdulaziz City for Science and Technology(KACST)through the Science&Technology Unit at King Fahd University of Petroleum&Minerals(KFUPM)for funding of this work,project No.NSTIP#13-WAT96-04,as part of the National Science,Technology and Innovation Plan.
文摘Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investigate the solid holdup and distribution in three LSCFB systems with different heights.In addition to data obtained here,we also use a portion of data sets of LSCFB systems developed by Zheng(1999)and Liang et al.(1996).Model predictions are in good agreement with the experimental data in both radial and axial directions and at different normalized superficial liquid and solid velocities.The radial profiles of the solid holdup are approximately identical at a fixed average cross-sectional solid holdup for the three LSCFB systems studied.Statistical performance indicators including the mean absolute percentage error(6.19%)and correlation coefficient(0.985)are within an acceptable range.The results suggest that a MGGP modeling approach is suitable for predicting the solid holdup and distribution of a scaled-up LSCFB system.
文摘The Eulerian-Eulerian framework was used in the numerical simulation of liquid hydrodynamics and particle motion in liquid-fluidized beds. The kinetic theory of granular flow, which accounts for the viscous drag influence on the interstitial liquid phase, was used in combination with two-fluid models to simulate unsteady liquid-solid two-phase flows. We focus on local unsteady features predicted by the numerical models. The solid fraction power spectrum was analyzed. A typical flow pattern, such as core annular flow and particle back-mixing near the wall region of liquid-solid fluidized beds is obtained from this calculation. Effects of the restitution coefficient of particle-particle collisions on the distribution of granular pressure and temperature are discussed. Good agreement was achieved between the simulated results and experimental findings.
基金long term support from the National Natural Science Foundation of China(Grant Nos.21222603 and 91434121)the Ministry of Science and Technology of China(Grant No.2013BAC12B01)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA07080301)
文摘Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid velocity, and is reported to be only dependent on the liquid and particle properties. This study presents a new approach to calculate the onset velocity using CFD-DEM simulation of the particle residence time distribution (RTD). The onset velocity is identified from the intersection of the fitted lines of the particle mean residence time as a function of superficial liquid velocity. Our results are in reasonable agreement with experimental data. The simulation indicates that the onset velocity is infuenced by the density and size of particles and weakly affected by riser height and diameter, A power-law function is proposed to correlate the mean particle residence time with the superficial liquid velocity. The collisional parameters have a minor effect on the mean residence time of particles and the onset velocity, but influence the particle RTD, showing some humps and trailing. The particle RTD is found to be related to the particle trajectories, which may indicate the complex flow structure and underlying mechanisms of the particle RTD.
基金supported by the Natural Science Foundation of Tianjin City(grant No.22JCQNJC00550)Open Research Fund of State Key Laboratory of Multiphase Complex Systems(grant No.MPCS-2021-D-06).
文摘A double-tube cooler with liquid-solid circulating fluidization operation and corresponding parameter measuring system are developed to avoid fouling of inner walls of heat exchange tubes in a cryogenic temperature external cooler of ammonium chloride solution in soda ash production.Wall-scaling prevention performance of the cooling process is experimentally evaluated using convection and overall coefficients,enhancement factor,wall temperature and fouling resistance.Effects of different volume fractions of added particles,particle size,superficial liquid velocity,and cooling medium temperature on heat transfer are examined.Under present conditions,convection coefficient of liquid-solid flow inside the tube of external cooler is higher than that of the liquid phase flow,increased by 0.7–2.8 times,enhancing cooling performance obviously.Convection coefficient initially increases and then decreases as the volume fraction of added particles increases,reaching its maximum value at a volume fraction of 2.0%.The wall-scaling prevention effect of glass beads mainly depends on the volume fraction of added particles;optimal anti-fouling effects are achieved when adding particles at a volume fraction of 2.0%,regardless of changes in superficial liquid velocity or cooling medium temperature.This study lays a foundation for industrial applications of this new technique of fluidized bed external coolers.