期刊文献+
共找到252篇文章
< 1 2 13 >
每页显示 20 50 100
Ecosystem changes revealed by land cover in the three-river headwaters region of Qinghai,China(1990–2015)
1
作者 XuWei Sun Sen Li +2 位作者 XiaoHui Zhai XiaoXu Wei ChangZhen Yan 《Research in Cold and Arid Regions》 CSCD 2023年第2期85-91,共7页
The Three-River Headwaters Region(TRHR) of Qinghai Province, in the Tibetan Plateau of China, is the main source of the Yangtze, Yellow, and Lancang rivers, and is very significant to the security of freshwater resour... The Three-River Headwaters Region(TRHR) of Qinghai Province, in the Tibetan Plateau of China, is the main source of the Yangtze, Yellow, and Lancang rivers, and is very significant to the security of freshwater resources for China and southeastern Asia. It is a critical ecological region of China for its ecological functions, and has been changed or even degraded in recent decades owing to climate change and human pressure. To effectively protect and restore the degraded ecosystems, the Chinese government initiated a series of ecological conservation projects in TRHR. It is essential to quantitatively assess ecosystem changes and their relationship to driving factors for indepth understanding of long-term changes of ecosystems and effects of ecological restoration policies and offer practical insights for ecological restoration. Here, land cover data has been interpreted with the series data of Landsat during 1990–2015. The patterns of different ecosystems and their developing process have been derived from land cover change. The results show that ecosystem types in TRHR include forest, grassland, cropland,wetland, artificial surface and barren land, accounting for 4.51%, 70.80%, 0.15%, 9.47%, 0.16% and 14.90%,respectively. Barren land converted to wetland was the significant ecosystem change from 1990 to 2015. Increases in temperature and precipitation and implementation of ecological rehabilitation helped maintain relatively stable ecosystem patterns. It is necessary to continue ecological projects to improve and/or maintain the ecosystems in TRHR because there is still a risk of land degradation under increasing climate change and human activity. 展开更多
关键词 three-river headwaters region Ecosystem change Land cover Affecting factor
下载PDF
Changes in Grassland Ecosystem Service Values in the Three-River Headwaters Region,China 被引量:3
2
作者 赖敏 吴绍洪 +1 位作者 尹云鹤 潘韬 《Agricultural Science & Technology》 CAS 2013年第4期654-660,共7页
[Method] This study aimed to assess the changes in grassland ecosystem Service values in the Three-River Headwaters Region of China, the source of the Yangtze, Yellow (Huang He) and Lantsang (Mekong) rivers. [Meth... [Method] This study aimed to assess the changes in grassland ecosystem Service values in the Three-River Headwaters Region of China, the source of the Yangtze, Yellow (Huang He) and Lantsang (Mekong) rivers. [Method] Biophysical values of four services were monetized within the region, including water regulation, air quality regulation, climate regulation and soil conservation. [Result] The total ESVs were 884.97×10^8 Yuan, 1 302.06×10^8 Yuan and 1 299.49×10^8 Yuan in 2000, 2005 and 2008, respectively. The amount of value per unit area experienced a steep increase from 2000 to 2005(18.10×10^4 Yuan/km2), and then remained almost unchanged from 2005 to 2008 (-0.31×10^4 Yuan/km2). The ESV tended to decline from the southeastern to the northwestern. ESV in the eastern and central part increased faster than that in the south-central and western part of the TRHR from 2000 to 2008. It could be seen that the ecosystem condition of grassland in the TRHR improved signifi- cantly over the study period of 2000-2008. [Conelusion] The results provided good information to assess the effectiveness of current ecological protection measures in the TRHR and support regional sustainable management policies. 展开更多
关键词 Grassland ecosystem Ecosystem service value (ESV) VALUATION The three-river headwaters region (TRHR)
下载PDF
Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau,China 被引量:12
3
作者 HE Qian DAI Xiao'ai CHEN Shiqi 《Journal of Arid Land》 SCIE CSCD 2020年第5期865-886,共22页
Soil erosion in the Three-River Headwaters Region(TRHR)of the Qinghai-Tibet Plateau in China has a significant impact on local economic development and ecological environment.Vegetation and precipitation are considere... Soil erosion in the Three-River Headwaters Region(TRHR)of the Qinghai-Tibet Plateau in China has a significant impact on local economic development and ecological environment.Vegetation and precipitation are considered to be the main factors for the variation in soil erosion.However,it is a big challenge to analyze the impacts of precipitation and vegetation respectively as well as their combined effects on soil erosion from the pixel scale.To assess the influences of vegetation and precipitation on the variation of soil erosion from 2005 to 2015,we employed the Revised Universal Soil Loss Equation(RUSLE)model to evaluate soil erosion in the TRHR,and then developed a method using the Logarithmic Mean Divisia Index model(LMDI)which can exponentially decompose the influencing factors,to calculate the contribution values of the vegetation cover factor(C factor)and the rainfall erosivity factor(R factor)to the variation of soil erosion from the pixel scale.In general,soil erosion in the TRHR was alleviated from 2005 to 2015,of which about 54.95%of the area where soil erosion decreased was caused by the combined effects of the C factor and the R factor,and 41.31%was caused by the change in the R factor.There were relatively few areas with increased soil erosion modulus,of which 64.10%of the area where soil erosion increased was caused by the change in the C factor,and 23.88%was caused by the combined effects of the C factor and the R factor.Therefore,the combined effects of the C factor and the R factor were regarded as the main driving force for the decrease of soil erosion,while the C factor was the dominant factor for the increase of soil erosion.The area with decreased soil erosion caused by the C factor(12.10×10^3 km^2)was larger than the area with increased soil erosion caused by the C factor(8.30×10^3 km^2),which indicated that vegetation had a positive effect on soil erosion.This study generally put forward a new method for quantitative assessment of the impacts of the influencing factors on soil erosion,and also provided a scientific basis for the regional control of soil erosion. 展开更多
关键词 soil erosion vegetation cover rainfall erosivity Logarithmic Mean Divisia Index quantitative assessment three-river headwaters region
下载PDF
A method for determining vegetation growth process using remote sensing data: A case study in the Three-River Headwaters Region, China 被引量:2
4
作者 CHEN Tian-tian YI Gui-hua +2 位作者 ZHANG Ting-bin WANG Qiang BIE Xiao-juan 《Journal of Mountain Science》 SCIE CSCD 2019年第9期2001-2014,共14页
Accurate measurements of the associated vegetation phenological dynamics are crucial for understanding the relationship between climate change and terrestrial ecosystems. However, at present, most vegetation phenologi... Accurate measurements of the associated vegetation phenological dynamics are crucial for understanding the relationship between climate change and terrestrial ecosystems. However, at present, most vegetation phenological calculations are based on a single algorithm or method. Because of the spatial, temporal, and ecological complexity of the vegetation growth processes, a single algorithm or method for monitoring all these processes has been indicated to be elusive. Therefore, in this study, from the perspective of plant growth characteristics, we established a method to remotely determine the start of the growth season(SOG) and the end of the growth season(EOG), in which the maximum relative change rate of the normalized difference vegetation index(NDVI) corresponds to the SOG, and the next minimum absolute change rate of the NDVI corresponds to the EOG. Taking the Three-River Headwaters Region in 2000–2013 as an example, we ascertained the spatiotemporal and vertical characteristics of its vegetation phenological changes. Then, in contrast to the actual air temperature data, observed data and other related studies, we found that the SOG and EOG calculated by the proposed method is closer to the time corresponding to the air temperature, and the trends of the SOG and EOG calculated by the proposed method are in good agreement with other relevant studies. Meantime, the error of the SOG between the calculated and observed in this study is smaller than that in other studies. 展开更多
关键词 VEGETATION phenology Normalized difference VEGETATION index (NDVI) Start of the growth SEASON (SOG) End of the growth SEASON (EOG) three-river headwaters region(TRHR)
下载PDF
Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China 被引量:26
5
作者 ZHANG Jiping ZHANG Linbo +2 位作者 LIU Welling QI Yue WO Xiao 《Journal of Geographical Sciences》 SCIE CSCD 2014年第2期303-312,共10页
The Three-River Headwaters region in China is an ecological barrier providing en- vironmental protection and regional sustainable development for the mid-stream and down- stream areas, which also plays an important ro... The Three-River Headwaters region in China is an ecological barrier providing en- vironmental protection and regional sustainable development for the mid-stream and down- stream areas, which also plays an important role in animal husbandry in China. This study estimated the grassland yield in the Three-River Headwaters region based on MODIS NPP data, and calculated the proper livestock-carrying capacity of the grassland. We analyzed the overgrazing number and its spatial distribution characteristics through data comparison be- tween actual and proper livestock-carrying capacity. The results showed the following: (1) total grassland yield (hay) in the Three-River Headwaters region was 10.96 million tons in 2010 with an average grassland yield of 465.70 kg/hm2 (the spatial distribution presents a decreasing trend from the east and southeast to the west and northwest in turn); (2) the proper livestock-carrying capacity in the Three-River Headwaters region is 12.19 million sheep units (hereafter described as "SU"), and the average stocking capacity is 51.27 SU [the proper carrying capacity is above 100 SU/km2 in the eastern counties, 60 SU/km2 in the cen- tral counties (except Madoi County), and 30 SU/km2 in the western counties]; and (3) total overgrazing number was 6.52 million SU in the Three-River Headwaters region in 2010, with an average overgrazing ratio of 67.88% and an average overgrazing number of 27.43 SU/km2 A higher overgrazing ratio occurred in Tongde, Xinghai, Yushu, Henan and Z^kog. There was no overgrazing in Zhiduo, Tanggula Township and Darlag, Qumerleb and Madoi. The re- mainder of the counties had varying degrees of overgrazing. 展开更多
关键词 proper livestock-carrying capacity actual livestock-carrying capacity overgrazing number three-river headwaters region
原文传递
Synthesis Analysis of Soil Erosion for Three-River Headwater Region Based on GIS 被引量:11
6
作者 陈琼 吴万贞 +3 位作者 周强 杨玉含 Wan-zhen Yu-han 《Agricultural Science & Technology》 CAS 2010年第5期155-158,共4页
In this paper,based on the common soil erosion model,the Three-River Headwaters region was select for study object. GIS methods are applied to conduct Semi-quantitative assessment for different types of soil erosion,a... In this paper,based on the common soil erosion model,the Three-River Headwaters region was select for study object. GIS methods are applied to conduct Semi-quantitative assessment for different types of soil erosion,and some results are concluded. The water erosion occurs in High Mountain and extra-high mountain of Yushu,Nangqian,Banma and Jiuzhi County in the southeast and south of the Three-River Headwaters region. The degree of erosion is prone to topography,precipitation,river and human activity. The freeze-thaw erosion mainly distributes in the northwest of the Three-River Headwaters region. The area of middle and above middle erosion degree accounts for roughly 50%. 展开更多
关键词 three-river headwaters region Soil erosion Comprehensive analysis
下载PDF
Grassland degradation in the "Three-River Headwaters" region, Qinghai Province 被引量:53
7
作者 LIU Jiyuan XU Xinliang SHAO Quanqin 《Journal of Geographical Sciences》 SCIE CSCD 2008年第3期259-273,共15页
Supported by MSS images in the mid and late 1970s,TM images in the early 1990s and TM/ETM images in 2004,grassland degradation in the"Three-River Headwaters"region (TRH region)was interpreted through analysis on R... Supported by MSS images in the mid and late 1970s,TM images in the early 1990s and TM/ETM images in 2004,grassland degradation in the"Three-River Headwaters"region (TRH region)was interpreted through analysis on RS images in two time series,then the spatial and temporal characteristics of grassland degradation in the TRH region were analyzed since the 1970s.The results showed that grassland degradation in the TRH region was a continuous change process which had large affected area and long time scale,and rapidly strengthen phenomenon did not exist in the 1990s as a whole.Grassland degradation pattern in the TRH region took shape initially in the mid and late 1970s.Since the 1970s,this degradation process has taken place continuously,obviously characterizing different rules in different regions.In humid and semi-humid meadow region,grassland firstly fragmentized, then vegetation coverage decreased continuously,and finally"black-soil-patch"degraded grassland was formed.But in semi-arid and arid steppe region,the vegetation coverage decreased continuously,and finally desertification was formed.Because grassland degradation had obviously regional differences in the TRH region,it could be regionalized into 7 zones, and each zone had different characteristics in type,grade,scale and time process of grassland degradation. 展开更多
关键词 three-river headwaters region QINGHAI grassland degradation remote sensing spatial pattern temporal process
下载PDF
The 30m-NDVI-based Alpine Grassland Changes and Climate Impacts in the Three-River Headwaters Region on the Qinghai-Tibet Plateau from 1990 to 2018 被引量:4
8
作者 SUN Ziyu WANG Junbang 《Journal of Resources and Ecology》 CSCD 2022年第2期186-195,共10页
The response of long-term vegetation changes and climate change has been a hot topic in recent research.Previously,a Landsat-based fusion model was developed and used to produce a dataset of normalized vegetation inde... The response of long-term vegetation changes and climate change has been a hot topic in recent research.Previously,a Landsat-based fusion model was developed and used to produce a dataset of normalized vegetation index(NDVI)for the Three-River Headwater region on the Qinghai-Tibet Plateau with a spatial resolution of 30 m and the time spanning the nearly 30 years from 1990 to 2018.In this study,the NDVI was applied to an analysis of the spatial and temporal changes in the alpine grassland and the impacts from climate change using the Theil-Sen Median method and linear regression.The results showed that:(1)The regional mean NDVI was 0.39and showed a spatial pattern of decreasing from the southeast to the northwest in the recent three decades.Among the three parks,the Lancang River Park had the highest NDVI(0.43),followed by the Yellow River Park(0.38)and Yangtze River Park(0.23).(2)An upward trending was found in the NDVI time series at a rate of 0.0031 yr^(-1)(R^(2)=0.62,P<0.01)over the whole period of 1990–2018.The increasing rate(0.00649 yr^(-1),R^(2)=0.71,P<0.01)in the latter period of 2005–2018 was nearly 2.3 times of that(0.00284 yr^(-1),R^(2)=0.31,P<0.01)in the previous period of1990–2005.In the latest periods,the three parks experienced rates that were 2.3 to 63 times the corresponding values in the early period.(3)The NDVI is correlated more positively with temperature than precipitation.The impacts of climate change decreased along with the coverage fraction from the higher,median and then lower levels.The climate change can explain 34%of the variability in the NDVI time series of the areas with a higher fraction of grassland coverage,while it was 31%for the median fraction and 20%for the lower fraction.This study is the first to use the 30 m NDVI dataset spanning nearly 30 years to analyze the spatial and temporal variability and climate impacts in the alpine grasslands of the Three-River Headwater region of the Qinghai-Tibet Plateau.The results provide a basis for assessments on the ecological management effects and ecological quality based on long-term baseline data with a higher spatial resolution. 展开更多
关键词 Normalized Difference Vegetation Index(NDVI) the three-river headwater region alpine grassland climate change
原文传递
Temperature variation and abrupt change analysis in the Three-River Headwaters Region during 1961-2010 被引量:9
9
作者 Yi Xiangsheng Li Guosheng Yin Yanyu 《Journal of Geographical Sciences》 SCIE CSCD 2012年第3期451-469,共19页
In this study, a monthly dataset of temperature time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region of Qinghai Province (THRHR) was used to analyze the climate change. T... In this study, a monthly dataset of temperature time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region of Qinghai Province (THRHR) was used to analyze the climate change. The temperature variation and abrupt change analysis were examined by using moving average, linear regression, Spline interpolation, Mann-Kendall test and so on. Some important conclusions were obtained from this research, which mainly contained four aspects as follows. (1) There were several cold and warm fluctuations for the annual and seasonal average temperature in the THRHR and its three sub-headwater regions, but the temperature in these regions all had an obviously rising trend at the statistical significance level, especially after 2001. The spring, summer, autumn and annual average temperature increased evidently after the 1990s, and the winter average temperature exhibited an obvious upward trend after entering the 21st century. Except the standard value of spring temperature, the annual and seasonal temperature standard value in the THRHR and its three sub-headwater regions increased gradually, and the upward trend for the standard value of winter average temperature indicated significantly. (2) The tendency rate of annual average temperature in the THRHR was 0.36℃ 10a^-1, while the tendency rates in the Yellow River Headwater Region (YERHR), Lancangjiang River Headwater Region (LARHR) and Yangtze River Headwater Region (YARHR) were 0.37℃ 10a^-1, 0.37℃ 10a^-1 and 0.34℃10a^-1 respectively. The temperature increased significantly in the south of Yushu County and the north of Nangqian County. The rising trends of temperature in winter and autumn were higher than the upward trends in spring and summer. (3) The abrupt changes of annual, summer, autumn and winter average temperature were found in the THRHR, LARHR and YARHR, and were detected for the summer and autumn average temperature in the YERHR. The abrupt changes of annual and summer average temperatures were mainly in the late 1990s, while the abrupt changes of autumn and winter average temperatures appeared primarily in the early 1990s and the early 21st century respectively. (4) With the global warming, the diversities of altitude and underlying surface in different parts of the Tibetan Plateau were possibly the main reasons for the high increasing rate of temperature in the THRHR. 展开更多
关键词 temperature variation inter-annual change inter-decadal change standard value change abruptchange analysis Three.River headwaters region
原文传递
Changing Spring Phenology Dates in the Three-Rivers Headwater Region of the Tibetan Plateau during 1960–2013 被引量:5
10
作者 Shuang YU Jiangjiang XIA +1 位作者 Zhongwei YAN Kun YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第1期116-126,共11页
The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the veg... The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the vegetation growing season(SOS)based on remote sensing data is easily affected by outliers because this data series is short. In this study, we determine that the spring minimum temperature is the most influential factor for SOS. The significant negative linear relationship between the two variables in the region is evaluated using Moderate Resolution Imaging Spectroradiometer–Normalized Difference Vegetation Index data for 2000–13. We then reconstruct the SOS time series based on the temperature data for 1960–2013.The regional mean SOS shows an advancing trend of 1.42 d(10 yr)during 1960–2013, with the SOS occurring on the 160th and 151st days in 1960 and 2013, respectively. The advancing trend enhances to 6.04 d(10 yr)during the past 14 years. The spatiotemporal variations of the reconstructed SOS data are similar to those deduced from remote sensing data during the past 14 years. The latter exhibit an even larger regional mean trend of SOS [7.98 d(10 yr)] during 2000–13. The Arctic Oscillation is found to have significantly influenced the changing SOS, especially for the eastern part of the region,during 2000–13. 展开更多
关键词 start of growing season normalized difference vegetation index spring minimum temperature three-rivers headwater region Arctic Oscillation
下载PDF
Quantifying impacts of climate and human activities on the grassland in the Three-River Headwater Region after two phases of Ecological Project 被引量:3
11
作者 Xiaogang Ning Ning Zhu +1 位作者 Yafei Liu Hao Wang 《Geography and Sustainability》 2022年第2期164-176,共13页
The Three-River Headwater Region(TRHR)of China is a typical representative of the alpine environment in the Central Asian plateau and the alpine grassland in the world.Grassland degradation is one of its serious eco-l... The Three-River Headwater Region(TRHR)of China is a typical representative of the alpine environment in the Central Asian plateau and the alpine grassland in the world.Grassland degradation is one of its serious eco-logical problems.The purpose of this study is to quantify the joint impacts of climate and human activities on grassland changes in TRHR after two phases of Ecological Conservation and Construction Project(Ecological Project).Grassland vegetation coverage is selected as an indicator for analyzing grassland changes.We adopt Sen+Mann-Kendall trend analysis,residual trend analysis and correlation analysis methods to analyze the trends in spatial-temporal changes and driving factors of grassland in TRHR from 2000 to 2019.The results show that:(1)The grassland has been mainly restored,and the degraded grassland area only accounts for 1.66%of TRHR.After the implementation of the first phase of the Ecological Project,the percentage of restored grassland area has significantly increased from 8.82%to 24.57%,and slightly decreased during the second phase.(2)The establish-ment of national nature reserves and the implementation of the Ecological Project have changed the situation that“the grassland inside the reserve is worse than that outside the reserve”.(3)Grassland restoration is mainly af-fected by the joint effects of climate and human activities.Nevertheless,grassland degradation is mainly affected by human activities such as overgrazing and grassland reclamation.All of these findings can enrich our under-standing of grassland restoration in TRHR.Artificial measures have certain limitations in promoting grassland restoration.Natural restoration should be considered when human beings strengthen ecological conservation and transform their production and life styles. 展开更多
关键词 three-river headwater region Ecological Conservation and Construction Project Grassland degradation Driving factors Human activities
下载PDF
Spatial patterns of ecosystem vulnerability changes during 2001–2011 in the three-river source region of the Qinghai-Tibetan Plateau, China 被引量:16
12
作者 GUO Bing ZHOU Yi +8 位作者 ZHU Jinfeng LIU Wenliang WANG Futao WANG Litao YAN Fuli WANG Feng YANG Guang LUO Wei JIANG Lin 《Journal of Arid Land》 SCIE CSCD 2016年第1期23-35,共13页
The three-river source region (TRSR, including Yangtze, Yellow and Lancang rivers), located in the Qinghai-Tibetan Plateau, China, is a typical alpine zone with apparent ecosystem vulnerability and sensitivity. In thi... The three-river source region (TRSR, including Yangtze, Yellow and Lancang rivers), located in the Qinghai-Tibetan Plateau, China, is a typical alpine zone with apparent ecosystem vulnerability and sensitivity. In this paper, we introduced many interdisciplinary factors, such as landscape pattern indices (Shannon diversity index and Shannon evenness index) and extreme climate factors (number of extreme high temperature days, number of extreme low temperature days, and number of extreme precipitation days), to establish a new model for evaluating the spatial patterns of ecosystem vulnerability changes in the TRSR. The change intensity (CI) of ecosystem vulnerability was also analyzed. The results showed that the established evaluation model was effective and the ecosystem vulnerability in the whole study area was intensive. During the study period of 2001–2011, there was a slight degradation in the eco-environmental quality. The Yellow River source region had the best eco-environmental quality, while the Yangtze River source region had the worst one. In addition, the zones dominated by deserts were the most severely deteriorated areas and the eco-environmental quality of the zones occupied by evergreen coniferous forests showed a better change. Furthermore, the larger the change rates of the climate factors (accumulative temperature of ≥10°C and annual average precipitation) are, the more intensive the CI of ecosystem vulnerability is. This study would provide a scientific basis for the eco-environmental protection and restoration in the TRSR. 展开更多
关键词 eco-environmental vulnerability climate factors spatial patterns three-river source region
下载PDF
Aboveground biomass of the alpine shrub ecosystems in Three-River Source Region of the Tibetan Plateau 被引量:2
13
作者 NIE Xiu-qing YANG Lu-cun +3 位作者 XIONG Feng LI Chang-bin LI FAN ZHOU Guo-ying 《Journal of Mountain Science》 SCIE CSCD 2018年第2期357-363,共7页
Though aboveground biomass(AGB) has an important contribution to the global carbon cycle,the information about storage and climatic effects of AGB is scare in Three-River Source Region(TRSR)shrub ecosystems. This stud... Though aboveground biomass(AGB) has an important contribution to the global carbon cycle,the information about storage and climatic effects of AGB is scare in Three-River Source Region(TRSR)shrub ecosystems. This study investigated AGB storage and its climatic controls in the TRSR alpine shrub ecosystems using data collected from 23 sites on the Tibetan Plateau from 2011 to 2013. We estimated the AGB storage(both shrub layer biomass and grass layer biomass) in the alpine shrubs as 37.49 Tg, with an average density of 1447.31 g m^(-2). Biomass was primarily accumulated in the shrub layer, which accounted for 92% of AGB, while the grass layer accounted for only 8%. AGB significantly increased with the mean annual temperature(P < 0.05). The effects of the mean annual precipitation on AGB were not significant. These results suggest that temperature,rather than precipitation, has significantly effects on of aboveground vegetation growth in the TRSR alpine shrub ecosystems. The actual and potential increase in AGB density was different due to global warming varies among different regions of the TRSR. We conclude that long-term monitoring of dynamic changes is necessary to improve the accuracy estimations of potential AGB carbon sequestration across the TRSR alpine shrub ecosystems. 展开更多
关键词 Alpine shrub ecosystem Abovegroundbiomass Temperature PRECIPITATION Sanjiangyuan three-river Source region
下载PDF
Climate Change and Ecological Projects Jointly Promote Vegetation Restoration in Three-River Source Region of China 被引量:2
14
作者 HE Xiaohui YU Yipin +1 位作者 CUI Zepeng HE Tian 《Chinese Geographical Science》 SCIE CSCD 2021年第6期1108-1122,共15页
As the source of the Yellow River,Yangtze River,and Lancang River,the Three-River Source Region(TRSR)in China is very important to China’s ecological security.In recent decades,TRSR’s ecosystem has degraded because ... As the source of the Yellow River,Yangtze River,and Lancang River,the Three-River Source Region(TRSR)in China is very important to China’s ecological security.In recent decades,TRSR’s ecosystem has degraded because of climate change and human disturbances.Therefore,a range of ecological projects were initiated by Chinese government around 2000 to curb further degradation.Current research shows that the vegetation of the TRSR has been initially restored over the past two decades,but the respective contribution of ecological projects and climate change in vegetation restoration has not been clarified.Here,we used the Moderate Resolution Imaging Spectroradiometer(MODIS)Enhanced Vegetation Index(EVI)to assess the spatial-temporal variations in vegetation and explore the impact of climate and human actions on vegetation in TRSR during 2001–2018.The results showed that about 26.02%of the TRSR had a significant increase in EVI over the 18 yr,with an increasing rate of 0.010/10 yr(P<0.05),and EVI significantly decreased in only 3.23%of the TRSR.Residual trend analysis indicated vegetation restoration was jointly promoted by climate and human actions,and the promotion of human actions was greater compared with that of climate,with relative contributions of 59.07%and40.93%,respectively.However,the degradation of vegetation was mainly caused by human actions,with a relative contribution of71.19%.Partial correlation analysis showed that vegetation was greatly affected by temperature(r=0.62,P<0.05)due to the relatively sufficient moisture but lower temperature in TRSR.Furthermore,the establishment of nature reserves and the implementation of the Ecological Protection and Restoration Program(EPRP)improved vegetation,and the first stage EPRP had a better effect on vegetation restoration than the second stage.Our findings identify the driving factors of vegetation change and lay the foundation for subsequent effective management. 展开更多
关键词 three-river Source region of China climate change Enhanced Vegetation Index(EVI) vegetation change human actions
下载PDF
Spatial and temporal change patterns of freeze-thaw erosion in the three-river source region under the stress of climate warming 被引量:5
15
作者 GUO Bing LUO Wei +1 位作者 WANG Dong-liang JIANG Lin 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1086-1099,共14页
The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT proce... The three-river source region(TRSR), located in the Qinghai-Tibet Plateau in China, suffers from serious freeze-thaw(FT) erosion in China. Considering the unique eco-environment and the driving factors of the FT process in the TRSR, we introduce the driving force factors of FT erosion(rainfall erosivity and wind field intensity during FT period) and precipitation during the FT period(indicating the phase-changed water content). The objective was to establish an improved evaluation method of FT erosion in the TRSR. The method has good applicability in the study region with an overall precision of 92%. The spatial and temporal changes of FT erosion from 2000 to 2015 are analyzed. Results show that FT erosion is widely distributed in the TRSR, with slight and mild erosion being the most widely distributed, followed by moderate erosion. Among the three sub-regions, the source region of the Yellow River has the slightest erosion intensity, whereas the erosion intensity of the source region of Yangtze River is the most severe. A slight improvement can be observed in the condition of FTerosion over the whole study region from 2000 to 2015. Vegetation coverage is the dominant factor affecting the intensity of FT erosion in the zones with sparse vegetation or bare land, whereas the climate factors play an important role in high vegetation coverage area. Slopes>28° also have a significant effect on the intensity of FT erosion in the zones. The results can provide a scientific basis for the prevention and management of the soil FT erosion in the TRSR. 展开更多
关键词 Freeze-thaw erosion Vegetation Precipitation three-river source region Global warming
下载PDF
Increased southerly and easterly water vapor transport contributed to the dry-to-wet transition of summer precipitation over the Three-River Headwaters in the Tibetan Plateau
16
作者 Xuan LIU Ming-Xiang YANG +6 位作者 Ning-Peng DONG Wei-Ning XIE Hong-Gang LI Zhen GUAN Fan WEN Hao WANG Deliang CHEN 《Advances in Climate Change Research》 SCIE CSCD 2023年第4期502-510,共9页
The Three-River Headwaters(TRH)region in the Tibetan Plateau is vulnerable to climate change;changes in summer(June–August)precipitation have a significant impact on water security and sustainability in both local an... The Three-River Headwaters(TRH)region in the Tibetan Plateau is vulnerable to climate change;changes in summer(June–August)precipitation have a significant impact on water security and sustainability in both local and downstream areas.However,the changes in summer precipitation of different intensities over the TRH region,along with their influencing factors,remain unclear.In this study,we used observational and ERA5 reanalysis data and employed a precipitation categorization and water vapor budget analysis to quantify the categorized precipitation variations and investigate their possible linkages with the water vapor budget.Our results showed an increasing trend in summer precipitation at a rate of 0.9 per year(p<0.1)during 1979–2020,with a significant dry-to-wet transition in 2002.The category‘very heavy precipitation’(10 mm d−1)contributed 65.1%of the increased summer precipitation,which occurred frequently in the northern TRH region.The dry-to-wet transition was caused by the effects of varied atmospheric circulations in each subregion.Southwesterly water vapor transport through the southern boundary was responsible for the increased net water vapor flux in the western TRH region(158.2%),while southeasterly water vapor transport through the eastern boundary was responsible for the increased net water vapor flux in the central TRH(155.2%)and eastern TRH(229.2%)regions.Therefore,we inferred that the dry-to-wet transition of summer precipitation and the increased‘very heavy precipitation’over the TRH was caused by increased easterly and southerly water vapor transport. 展开更多
关键词 Summer precipitation three-river headwaters region Precipitation intensity Water vapor budget
原文传递
Study on the Status and Topographic Heterogeneity of the Headwater Region of the Three Rivers
17
作者 Dan WU 《Asian Agricultural Research》 2020年第5期33-35,共3页
The ecological environment of the Three-River Headwater Region is primitive and unique,and sensitive and complex to external influences.The Three-River Headwater Region is the largest nature reserve in China,and is al... The ecological environment of the Three-River Headwater Region is primitive and unique,and sensitive and complex to external influences.The Three-River Headwater Region is the largest nature reserve in China,and is also a nature reserve with the highest concentration of biodiversity in the world's high-altitude areas,so the protection of ecological diversity in this region is particularly important.Ecological diversity is the material basis on which the entire humanity depends to survive and develop.It not only provides humans with basic needs such as food,energy and materials,and is also extremely important for maintaining ecological balance,regulating the climate and promoting the sustainable development of the region.Studying the topographical heterogeneity of the region is first of all a true grasp of the topography of the region,which has certain guiding significance for people's production and life.In addition,studying the impact of topographical heterogeneity on the climate of the region will help to study the formation and variation of regional climate. 展开更多
关键词 three-river headwater region Ecological environment Humanistic environment Topographic heterogeneity
下载PDF
三江源区鱼类多样性调查及保护对策
18
作者 陈锋 袁婷 +7 位作者 熊满堂 赵先富 马沛明 朱滨 张志永 刘晖 董方勇 李键庸 《水生态学杂志》 CSCD 北大核心 2024年第5期1-8,共8页
了解三江源区鱼类多样性及其资源现状,为三江源区生态系统保护和流域管理提供科学依据。2022年8月开展了长江源、黄河源、澜沧江源鱼类调查,分析了3个水系鱼类组成与分布,探讨了鱼类多样性特征,研究了三江源地区鱼类群落的空间格局。结... 了解三江源区鱼类多样性及其资源现状,为三江源区生态系统保护和流域管理提供科学依据。2022年8月开展了长江源、黄河源、澜沧江源鱼类调查,分析了3个水系鱼类组成与分布,探讨了鱼类多样性特征,研究了三江源地区鱼类群落的空间格局。结果表明:三江源区共调查到鱼类18种,其中长江源9种,黄河源8种,澜沧江源6种;根据相对重要性指数,长江源优势种3种,依次为细尾高原鳅(Triplophysa stenura)、小头高原鱼(Herzensteinin microcephalus)、裸腹叶须鱼(Ptychobarbus dipogon),黄河源优势种2种,包括麻尔柯高原鳅(T.markehenensis)和黄河裸裂尻鱼(Schizopygopsis pylzovi),澜沧江源优势种4种,依次为前腹裸裂尻鱼(S.anteroventris)、裸腹叶须鱼、东方高原鳅(T.orientalis)和细尾高原鳅;三江源区鱼类多样性相对较低,其中澜沧江源最高,长江源次之,黄河源最低。对鱼类种类组成进行聚类分析,结果表明长江源和澜沧江源相近,黄河源则与长江源、澜沧江源差距较大。为切实保护好三江源区鱼类资源,建议加强本底调查,开展关键栖息地生态环境监测和保护,构建三江源区水生生物资源数据库,关注气候变化对水生态环境的影响,预防和控制外来鱼类入侵。 展开更多
关键词 鱼类多样性 空间格局 优势种 保护对策 三江源区
下载PDF
Climate change and its driving effect on the runoff in the "Three-River Headwaters" region 被引量:16
19
作者 ZHANG Shifeng HUA Dong +1 位作者 MENG Xiujing ZHANG Yongyong 《Journal of Geographical Sciences》 SCIE CSCD 2011年第6期963-978,共16页
Based on the precipitation and temperature data of the 12 meteorological stations in the "Three-River Headwaters" region and the observed runoff data of Zhimenda in the headwater sub-region of the Yangtze River, Tan... Based on the precipitation and temperature data of the 12 meteorological stations in the "Three-River Headwaters" region and the observed runoff data of Zhimenda in the headwater sub-region of the Yangtze River, Tangnaihai in the headwater sub-region of the Yellow River and Changdu in the headwater sub-region of the Lancang River during the period 1965-2004, this paper analyses the trends of precipitation, temperature, runoff depth and carries out significance tests by means of Mann-KendalI-Sneyers sequential trend test. Mak- kink model is applied to calculate the potential evaporation. The runoff model driven by pre- cipitation and potential evaporation is developed and the influence on runoff by climate change is simulated under different scenarios. Results show that during the period 1965-2004 the temperature of the "Three-River Headwaters" region is increasing, the runoff of the three hydrological stations is decreasing and both of them had abrupt changes in 1994, while no significant trend changes happen to the precipitation. The runoff model suggests that the precipitation has a positive effect on the runoff depth, while the potential evaporation plays a negative role. The influence of the potential evaporation on the runoff depth of the Lancang River is found to be the significant in the three rivers; and that of the Yellow River is the least. The result of the scenarios analysis indicates that although the precipitation and the potential evaporation have positive and negative effects on runoff relatively, fluctuated characteristics of individual effect on the runoff depth in specific situations are represented. 展开更多
关键词 the three-river headwaters region climate change Makkink model driving model scenariosanalysis
原文传递
三江源区草地水土保持与防风固沙功能临界植被覆盖度时空变化分析
20
作者 杨祎 王根绪 +1 位作者 李阳 王志伟 《山地学报》 CSCD 北大核心 2024年第2期143-153,共11页
三江源区是中国重要的生态安全屏障,其水土保持与防风固沙功能对中国及其周边地区生态安全具有重大意义。水土保持与防风固沙功能临界植被覆盖度是三江源草地生态保护与恢复的关键指标,但其变化尚不明确。本研究利用修正通用土壤流失方... 三江源区是中国重要的生态安全屏障,其水土保持与防风固沙功能对中国及其周边地区生态安全具有重大意义。水土保持与防风固沙功能临界植被覆盖度是三江源草地生态保护与恢复的关键指标,但其变化尚不明确。本研究利用修正通用土壤流失方程(RUSLE)和修正通用土壤风蚀方程(RWEQ)模拟了1979—2018年三江源区草地水土保持与防风固沙功能临界植被覆盖度并分析了其时空变化。结果表明:(1)近40年来,三江源区草地水土保持功能临界植被覆盖度东南高、西北低,多年平均值为12.21%±1.42%,年增长率为0.30%(P<0.01)。(2)防风固沙功能临界植被覆盖度西北高、东南低,多年平均值为39.84%±11.94%,有不显著增长趋势。(3)水土保持及防风固沙功能临界植被覆盖度西北高、东南低,多年平均值为45.38%±10.04%,年增长率为0.32%(P<0.05),变化范围为11.73%~58.56%。三江源区西北部水土保持及防风固沙功能临界植被覆盖度大于50%,西南大部分区域不超过40%。(4)水土保持及防风固沙功能临界植被覆盖度在长江源区和黄河源区东北部呈下降趋势,其中黄河源东北部下降趋势显著(P<0.01),在黄河源区南部和澜沧江源区呈显著上升趋势(P<0.01)。本研究结果可为三江源生态环境保护以及高寒草地多目标管理提供科学依据与数据支撑。 展开更多
关键词 临界植被盖度 生态阈值 生态恢复 高寒草地 三江源
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部