The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repea...The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repeatedly during solidification and left a shrinkage cavity with layered structure under mechanical vibration. The castings with less shrinkage and higher density could be achieved through the vibration. The calculation results of physical model showed that the burst feeding could perform spontaneously under vibration while difficultly without vibration in low-pressure die casting. The obstruction of a casting could be broken and the grains could be rearranged by the vibration. And the obstruction could be carried away due to the inner and outer pressure difference, causing a burst feeding.展开更多
As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can ...As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can even be used to prevent or at least reduce these disasters. The study of the focal mechanisms of different seismic sources is the prerequisite and basis for forecasting rock burst by microseismic monitoring technology. Based on the analysis on the mechanism and fracture course of coal pillars where rock bursts occur mostly, the equivalent point source model of the seismicity caused by a coal pillar was created. Given the model, the seismic displacement equation of a coal pillar was analyzed and the seismic mechanism was pointed out by seismic wave theory. The course of the fracture of the coal pillar was simulated closely in the laboratory and the equivalent microseismic signals of the fractures of the coal pillar were acquired using a TDS-6 experimental system. The results show that, by the pressure and friction of a medium near the seismic source, both a compression wave and a shear wave will be emitted and shear fracture will be induced at the moment of breakage. The results can be used to provide an academic basis to forecast and prevent rock bursts or tremors in a coal pillar.展开更多
This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mu...This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.展开更多
We explore the complicated bursting oscillations as well as the mechanism in a high-dimensional dynamical system.By introducing a periodically changed electrical power source in a coupled BVP oscillator, a fifth-order...We explore the complicated bursting oscillations as well as the mechanism in a high-dimensional dynamical system.By introducing a periodically changed electrical power source in a coupled BVP oscillator, a fifth-order vector field with two scales in frequency domain is established when an order gap exists between the natural frequency and the exciting frequency.Upon the analysis of the generalized autonomous system, bifurcation sets are derived, which divide the parameter space into several regions associated with different types of dynamical behaviors. Two typical cases are focused on as examples,in which different types of bursting oscillations such as sub Hopf/sub Hopf burster, sub Hopf/fold-cycle burster, and doublefold/fold burster can be observed. By employing the transformed phase portraits, the bifurcation mechanism of the bursting oscillations is presented, which reveals that different bifurcations occurring at the transition between the quiescent states(QSs) and the repetitive spiking states(SPs) may result in different forms of bursting oscillations. Furthermore, because of the inertia of the movement, delay may exist between the locations of the bifurcation points on the trajectory and the bifurcation points obtained theoretically.展开更多
The mathematical model of CO oxidation with three time scales on platinum group metals is investigated, in which order gaps between the time scales related to external perturbation and the rates associated with differ...The mathematical model of CO oxidation with three time scales on platinum group metals is investigated, in which order gaps between the time scales related to external perturbation and the rates associated with different chemical reaction steps exist. Forced bursters, such as point–point type forced bursting and point–cycle type forced bursting, are presented. The bifurcation mechanism of forced bursting is novel, and the phenomenon where two different kinds of spiking states coexist in point–cycle type forced bursting has not been reported in previous work. A double-parameter bifurcation set of the fast subsystem is explored to reveal the transition mechanisms of different forced bursters with parameter variation.展开更多
Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for ...Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.展开更多
Through the investigation and analysis of high stress distribution in surrounding rock during the excavation of rock tunnels,the key factors to cause rock burst and the mechanism of rock burst generation and developme...Through the investigation and analysis of high stress distribution in surrounding rock during the excavation of rock tunnels,the key factors to cause rock burst and the mechanism of rock burst generation and development are researched. The result shows that the scale and range of rock burst are related with elastic deformation energy storied in rock mass and the characteristics of unloading stress waves. The measures of preventing from rock burst for high stress rock tunnels are put forward.展开更多
To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,th...To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.展开更多
The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is f...The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha- nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.展开更多
The theoretical analysis, numerical simulation and field observation were used to study distribution characters of abutment pressure of fully mechanized sublevel caving face in deep mine, fully mechanized sublevel cav...The theoretical analysis, numerical simulation and field observation were used to study distribution characters of abutment pressure of fully mechanized sublevel caving face in deep mine, fully mechanized sublevel caving and pressure relief in entries along goaf to the influence of rock burst. The results show that: (1) With the increasing of mining depth, the abutment pressure zone is larger, its peak point is transferred to the front of face, the danger area occurring rock burst in the two fully mechanized sublevel caving entries is larger, and its position is far from the face; (2) There is larger failure area in the upper coal in front of the fully mechanized caving face, and strata possibly occurring rock burst transferred to the upwards or far from faces because of the main roof's buffer effect to the dynamic pressure burst, then possibility and strength reduced; (3) The position occurring rock burst is stress concentration zones (abutment pressure along the goaf and residual tectonic stress) and zones with geological structure; (4) Strenuous activities of roof is the inducing factor occurring rock burst.展开更多
基金Projects(51475120,U1537201) supported by the National Natural Science Foundation of China
文摘The burst feeding behavior of ZL205 A casting under mechanical vibration and low pressure was investigated by casting experiment and physical model. Experimental results indicated that the burst feeding appeared repeatedly during solidification and left a shrinkage cavity with layered structure under mechanical vibration. The castings with less shrinkage and higher density could be achieved through the vibration. The calculation results of physical model showed that the burst feeding could perform spontaneously under vibration while difficultly without vibration in low-pressure die casting. The obstruction of a casting could be broken and the grains could be rearranged by the vibration. And the obstruction could be carried away due to the inner and outer pressure difference, causing a burst feeding.
基金Projects 5049027350474068 supported by the National Natural Science Foundation of China+3 种基金2005CB221504 by the National Basic Research Program of China20030290017 by the Special Fund for Ph.D. Programs of the National Ministry of Education2006BAK04B02, 2006BAK03B06 by the National Eleventh Five-Year Key Science & Technology Project[2007]3020 by the State Scholarship Fund of China Scholarship Council
文摘As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can even be used to prevent or at least reduce these disasters. The study of the focal mechanisms of different seismic sources is the prerequisite and basis for forecasting rock burst by microseismic monitoring technology. Based on the analysis on the mechanism and fracture course of coal pillars where rock bursts occur mostly, the equivalent point source model of the seismicity caused by a coal pillar was created. Given the model, the seismic displacement equation of a coal pillar was analyzed and the seismic mechanism was pointed out by seismic wave theory. The course of the fracture of the coal pillar was simulated closely in the laboratory and the equivalent microseismic signals of the fractures of the coal pillar were acquired using a TDS-6 experimental system. The results show that, by the pressure and friction of a medium near the seismic source, both a compression wave and a shear wave will be emitted and shear fracture will be induced at the moment of breakage. The results can be used to provide an academic basis to forecast and prevent rock bursts or tremors in a coal pillar.
基金support of the National Natural Science Foundation of China (Grant Nos.51379007,41130742)the support of the Chinese Fundamental Research (973)Program through the Grant No.2013CB036006
文摘This paper presents a case study of water inrush and mud burst occurring in a migmatite tunnel to study its formation mechanisms. The geological investigation and mineralogical analysis showed that water inrush and mud burst in the migmatite was closely related to the component of the host rock. High content of soluble minerals,e.g.,calcite and dolomite,would make the migmatite rock prone to be fragmentized,isintegrated and eventually form different sorts of connected or semi-connected veins. The field exploration revealed most cavities in the magmatite tunnel were eroded by groundwater and formed large interconnected networks. The two faults and the dike in the magmatite tunnel became the preferred paths and provided great convenience for plenty of precipitation and mud slurry. Due to high water pressure and blast disturbance,the cavities can soon connect each other as well as all sorts of veins,forming a complex ground channel for water inrush and mud burst. To estimate the potential occurrenceof water inrush and mud burst,the water bursting coefficient was employed. The results showed the water bursting coefficient of the magmatite tunnel was much bigger than the threshold values and it can be used to explain the accident of water inrush and mud burst occurring in the magmatite tunnel.
基金Project supported by the National Natural Science Foundation of China(Grant No.21276115)
文摘We explore the complicated bursting oscillations as well as the mechanism in a high-dimensional dynamical system.By introducing a periodically changed electrical power source in a coupled BVP oscillator, a fifth-order vector field with two scales in frequency domain is established when an order gap exists between the natural frequency and the exciting frequency.Upon the analysis of the generalized autonomous system, bifurcation sets are derived, which divide the parameter space into several regions associated with different types of dynamical behaviors. Two typical cases are focused on as examples,in which different types of bursting oscillations such as sub Hopf/sub Hopf burster, sub Hopf/fold-cycle burster, and doublefold/fold burster can be observed. By employing the transformed phase portraits, the bifurcation mechanism of the bursting oscillations is presented, which reveals that different bifurcations occurring at the transition between the quiescent states(QSs) and the repetitive spiking states(SPs) may result in different forms of bursting oscillations. Furthermore, because of the inertia of the movement, delay may exist between the locations of the bifurcation points on the trajectory and the bifurcation points obtained theoretically.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 20976075, 10972091, and 11002093)the College Graduate Student Scientific Research Innovation Foundation of Jiangsu Province, China (Grant No. CXLX12-0619)
文摘The mathematical model of CO oxidation with three time scales on platinum group metals is investigated, in which order gaps between the time scales related to external perturbation and the rates associated with different chemical reaction steps exist. Forced bursters, such as point–point type forced bursting and point–cycle type forced bursting, are presented. The bifurcation mechanism of forced bursting is novel, and the phenomenon where two different kinds of spiking states coexist in point–cycle type forced bursting has not been reported in previous work. A double-parameter bifurcation set of the fast subsystem is explored to reveal the transition mechanisms of different forced bursters with parameter variation.
基金supported by the National Basic Research Program of China(973 Program)under Grant No.2012CB315800the National Natural Science Foundation of China under Grants No.61275077,No.61071117,No.61171158,No.61102131+1 种基金the Natural Science Foundation Project of CQ,CSTC under GrantsNo.2009BB2285,No.2008BB2414,No.2010BB2413,No.2010BB2409,No.2010BB2413the Projects of the Education Council of Chongqing under Grants No.KJ080513,No.KJ080522,No.KJ110519,No.KJ110527
文摘Hybrid optical switching networks make full use of the advantages of Optical Circuit Switching(OCS)and Optical Burst Switching(OBS).In parallel hybrid optical switching networks,edge nodes choose a switching mode for traffic and no longer change.The inflexible decision making of the traffic transfer mode leads to low resource utilization when the arrival rate of the OCS traffic is lower than the capacity of the light path.In this paper,a new transmission scheme is proposed to improve resource utilization for hybrid optical switching networks.When the traffic arrival rate of the light path is lower than the transmission rate of the light path,the OCS traffic flow is reshaped at the edge nodes to generate a series of voids.Then,several message packets are sent along the light path to inform the core nodes of the voids of the light paths that represent the unused bandwidth resources.To improve the resource utilization,the voids can be filled with data bursts by core nodes.The simulation results show that the new scheme can effectively reduce the burst loss rate and improve the link utilization of the hybrid optical switching network on the premise of a providing service quality guarantee for OCS traffic.
文摘Through the investigation and analysis of high stress distribution in surrounding rock during the excavation of rock tunnels,the key factors to cause rock burst and the mechanism of rock burst generation and development are researched. The result shows that the scale and range of rock burst are related with elastic deformation energy storied in rock mass and the characteristics of unloading stress waves. The measures of preventing from rock burst for high stress rock tunnels are put forward.
基金Project(2019SDZY02)supported by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research Development Program,ChinaProject(51904165)supported by the National Natural Science Foundation of ChinaProject(ZR2019QEE026)supported by the Shandong Provincial Natural Science Foundation,China。
文摘To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.
文摘The thermo-mechanical stress and deformation of water-cooled gun barrel during burst firing are studied by finite element analysis (FEA). The problem is modeled in two steps: 1) A transient heat transfer analysis is first carried out in order to determine temperature evolution and to predict the residual temperatures during the burst firing event; 2) The thermo-mecha- nical stresses and deformation caused by both the residual temperature field and the gas pressure are then calculated. The results show that the residual temperature field tends to a steady state with the increasing of rounds. The residual temperature field has much effect on the gun barrel stress and deformation, especially on the assembly area between barrel and water jacket. The gage between the barrel and water jacket is the critical factor to the thermo- mechanical stress and deformation. The results of this analysis will be very useful to develop the new strength design theory of the liquid-cooled gun barrel.
文摘The theoretical analysis, numerical simulation and field observation were used to study distribution characters of abutment pressure of fully mechanized sublevel caving face in deep mine, fully mechanized sublevel caving and pressure relief in entries along goaf to the influence of rock burst. The results show that: (1) With the increasing of mining depth, the abutment pressure zone is larger, its peak point is transferred to the front of face, the danger area occurring rock burst in the two fully mechanized sublevel caving entries is larger, and its position is far from the face; (2) There is larger failure area in the upper coal in front of the fully mechanized caving face, and strata possibly occurring rock burst transferred to the upwards or far from faces because of the main roof's buffer effect to the dynamic pressure burst, then possibility and strength reduced; (3) The position occurring rock burst is stress concentration zones (abutment pressure along the goaf and residual tectonic stress) and zones with geological structure; (4) Strenuous activities of roof is the inducing factor occurring rock burst.