The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex buil...The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex building obstacles,and the aircraft's high dynamics,traditional algorithms cannot find the optimal collision-free flying path between the UAV station and the destination.Accordingly,in this paper,we study the fast UAV path planning problem in a 3D urban environment from a source point to a target point and propose a Three-Step Experience Buffer Deep Deterministic Policy Gradient(TSEB-DDPG)algorithm.We first build the 3D model of a complex urban environment with buildings and project the 3D building surface into many 2D geometric shapes.After transformation,we propose the Hierarchical Learning Particle Swarm Optimization(HL-PSO)to obtain the empirical path.Then,to ensure the accuracy of the obtained paths,the empirical path,the collision information and fast transition information are stored in the three experience buffers of the TSEB-DDPG algorithm as dynamic guidance information.The sampling ratio of each buffer is dynamically adapted to the training stages.Moreover,we designed a reward mechanism to improve the convergence speed of the DDPG algorithm for UAV path planning.The proposed TSEB-DDPG algorithm has also been compared to three widely used competitors experimentally,and the results show that the TSEB-DDPG algorithm can archive the fastest convergence speed and the highest accuracy.We also conduct experiments in real scenarios and compare the real path planning obtained by the HL-PSO algorithm,DDPG algorithm,and TSEB-DDPG algorithm.The results show that the TSEBDDPG algorithm can archive almost the best in terms of accuracy,the average time of actual path planning,and the success rate.展开更多
An accurate and fast three-step self-calibrating generalized phase-shifting interferomertry(SGPSI) is proposed. In this approach, two new phase-shifting signals are constructed by the difference interferograms normali...An accurate and fast three-step self-calibrating generalized phase-shifting interferomertry(SGPSI) is proposed. In this approach, two new phase-shifting signals are constructed by the difference interferograms normalization and noise suppressing, then the unknown phase shift between the two difference phase-shifting signals is estimated quickly through searching the minimum coefficient of variation of the modulation amplitude, a limited number of pixels are selected to participate in the search process to further save time, and finally the phase is reconstructed through the searched phase shift. Through the reconstruction of phase map by the simulation and experiment, and the comparison with several mature algorithms, the good performance of the proposed algorithm is proved, and it eliminates the limitation of requiring more than three phase-shifting interferograms for high-precision SGPSI. We expect this method to be widely used in the future.展开更多
Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measure...Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.展开更多
In this paper, we propose an encryption scheme based on phase-shifting digital interferometry. According to the original system framework, we add a random amplitude mask and replace the Fourier transform by the Fresne...In this paper, we propose an encryption scheme based on phase-shifting digital interferometry. According to the original system framework, we add a random amplitude mask and replace the Fourier transform by the Fresnel transform. We develop a mathematical model and give a discrete formula based on the scheme, which makes it easy to implement the scheme in computer programming. The experimental results show that the improved system has a better performance in security than the original encryption method. Moreover, it demonstrates a good capability of anti-noise and anti-shear robustness.展开更多
A phase-shifting digital holography scheme developed to investigate internal defects in artworks is described. Phase-shifting is utilized to obtain a clear reconstructed object wave from a rough surface texture. A rev...A phase-shifting digital holography scheme developed to investigate internal defects in artworks is described. Phase-shifting is utilized to obtain a clear reconstructed object wave from a rough surface texture. A reverse-transform algorithm is employed to reconstruct the object wave on its original position of unknown distance or the imaging position from the object wave information on the holographic plane. To get the clearest reconstruction the exact registration of the unknown distance is determined by applying the intensity sum as the auto-focusing function, The spatial resolution of the reconstruction image is also investigated for a variety of affecting factors. Laboratory results of reconstruction images under deformation are presented.展开更多
A multiple-image encryption method based on two-step phase-shifting interferometry (PSI) and spatial multiplexing of a smooth compressed signal is proposed. In the encoding and encryption process, with the help of f...A multiple-image encryption method based on two-step phase-shifting interferometry (PSI) and spatial multiplexing of a smooth compressed signal is proposed. In the encoding and encryption process, with the help of four index matrices to store original pixel positions, all the pixels of four secret images are firstly reordered in an ascending order; then, the four reordered images are transformed by five-order Haar wavelet transform and performed sparseness operation. After Arnold transform and pixels sampling operation, one combined image can be grouped with the aid of compressive sensing (CS) and spatial multiplexing techniques. Finally, putting the combined image at the input plane of the PSI encryption scheme, only two interferograms ciphertexts can be obtained. During the decoding and decryption, utilizing all the secret key groups and index matrices keys, all the original secret images can be successfully decrypted by a wave-front retrieval algorithm of two-step PSI, spatial de-multiplexing, inverse Arnold transform, inverse discrete wavelet transform, and pixels reordering operation.展开更多
Fresnel incoherent correlation holography(FINCH)has the ability to generate three-dimensional images with a superresolution by using incoherent sources.However,there are unwanted direct current term and twin image in ...Fresnel incoherent correlation holography(FINCH)has the ability to generate three-dimensional images with a superresolution by using incoherent sources.However,there are unwanted direct current term and twin image in interferograms,so it is of great significance to find a method to eliminate them.Phase-shifting technology is a most widely used technique for this task,but its three-step phase-shifting is not suitable for the instantaneous measurement of dynamic objects,and the quality of reconstructed image with the traditional two-step phase-shifting is lower.In this paper,we present a method of enhancing the resolution through using a two-step phase-shifting technology based on the discrete wavelet transform.After two-step phase-shifting,the resulting hologram is a superposition of multiple forms.The frequency of the resulting hologram is decomposed into different levels through using discrete wavelet transform,then the image is reconstructed after retrieving the low frequency band.Various experiments have verified the effectiveness of this method.展开更多
focus of all countries.As an effective new energy,the fuel cell has attracted the attention of scholars.However,due to the particularity of proton exchange membrane fuel cell(PEMFC),the performance of traditional PI c...focus of all countries.As an effective new energy,the fuel cell has attracted the attention of scholars.However,due to the particularity of proton exchange membrane fuel cell(PEMFC),the performance of traditional PI controlled phase-shifted full-bridge power electronics DC-DC converter cannot meet the needs of practical application.In order to further improve the dynamic performance of the converter,this paper first introduces several main topologies of the current mainstream front-end DC-DC converter,and analyzes their performance in the fuel cell system.Then,the operation process of the phase-shifted fullbridge power electronics DC-DC converter is introduced,and the shortcomings of the traditional PI control are analyzed.Finally,a double closed-loop adaptive fuzzy PI controller is proposed,which is characterized by dynamically adjusting PI parameters according to different working states to complete the intelligent control of phase-shifted full-bridge DC-DC converter.The simulation results in MATLAB/Simulink show that the proposed algorithm has good a control effect.Compared with the traditional algorithm,the overshoot and stabilization time of the system are shorter.The algorithm can effectively suppress the fluctuation of the output current of the fuel cell converter,and is a very practical control method.展开更多
A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phas...A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.展开更多
In this Letter,we innovatively present general analytical expressions for arbitrary n-step phase-shifting Fourier single-pixel imaging(FSI).We also design experiments capable of implementing arbitrary n-step phase-shi...In this Letter,we innovatively present general analytical expressions for arbitrary n-step phase-shifting Fourier single-pixel imaging(FSI).We also design experiments capable of implementing arbitrary n-step phase-shifting FSI and compare the experimental results,including the image quality,for 3-to 6-step phase-shifting cases without loss of generality.These results suggest that,compared to the 4-step method,these FSI approaches with a larger number of steps exhibit enhanced robustness against noise while ensuring no increase in data-acquisition time.These approaches provide us with more strategies to perform FSI for different steps,which could offer guidance in balancing the tradeoff between the image quality and the number of steps encountered in the application of FSI.展开更多
The effects of a novel three-step aging process (T76+T6) on the electrochemical corrosion behavior of 7150 extruded aluminum alloy were evaluated and compared with those of the conventional retrogression and re-agi...The effects of a novel three-step aging process (T76+T6) on the electrochemical corrosion behavior of 7150 extruded aluminum alloy were evaluated and compared with those of the conventional retrogression and re-aging process (T77). The open circuit potential (OCP), cyclic polarization and electrochemical impedance spectra (EIS) of the A1 alloys were measured after treatment in three solutions (3.5% NaCl (mass fraction); 10 mmol/L NaCl + 0.1 mol/L Na2SO4; 4 mol/L NaCl + 0.5 mol/L KNO3 + 0.1 mol/L HNO3). The parameters including the corrosion potential, pitting potential, pit transition potential and steepness, and potential differences were extensively discussed to evaluate the corrosion behavior of the Al alloys. The electrochemical and scanning electron microscopy (SEM) data show that compared with the 7150-T77 Al alloy, the T76 + T6 aged 7150 A1 alloy exhibits better resistance to pitting corrosion, inter-granular corrosion (IGC) and exfoliation corrosion, which is attributed to further coarsening and inter-spacing of the grain boundary particles (GBPs) as revealed by transmission electron microscopy. Furthermore, the hardness tests indicate that an attractive combination of strength and corrosion resistance was obtained for the 7150 Al alloy with T76 + T6 treatment.展开更多
The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow st...The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow strain rate tests, electron probe microanalysis, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results revealed that three-step homogenization improved the uniformity of Zr distribution by eliminating segregation of the main alloying elements. During the second homogenization step at 350 °C for 10 h, coarse and strip-like equilibrium η phases formed which assisted the nucleation of Al3Zr dispersoids and reduced the width of the precipitate-free zone of A13Zr dispersoids. As a result, coarse recrystallization was greatly reduced after homogenization at 200 °C, 2 h + 350 °C, 10 h + 470 °C, 12 h, which contributed to improving the overall properties of the 7N01 aluminum alloys.展开更多
Aliased surface waves are caused by large-space sampling intervals in three- dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppr...Aliased surface waves are caused by large-space sampling intervals in three- dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppression method using phase-shift and phase-filtering, named the PSPF method, in which linear phase-shift is performed to solve the coupled problem of surface and reflected waves in the FKXKY domain and then used phase and FKXKY filtering to attenuate the surface-wave energy. Processing of model and field data suggest that the PSPF method can reduce the surface-wave energy while maintaining the low-frequency information of the reflected waves.展开更多
The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron m...The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.展开更多
2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to ...2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to solve such an issue. In the measurement, two properchosen frequency gratings are utilized to synthesize an equivalent wavelength grating which ensures the computed phase in a principal phase range. Thus, the error caused by the phase unwrapping process with the conventional phase reconstruct algorithm can be eliminated. Finally, experimental result of a specimen with large plastic deformation is given to prove that the proposed method is effective to handle the phase discontinuity.展开更多
Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome...Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.展开更多
BACKGROUND Robotic surgery has been considered to be significantly better than laparoscopic surgery for complicated procedures.AIM To explore the short-term effect of robotic and laparoscopic spleen-preserving splenic...BACKGROUND Robotic surgery has been considered to be significantly better than laparoscopic surgery for complicated procedures.AIM To explore the short-term effect of robotic and laparoscopic spleen-preserving splenic hilar lymphadenectomy(SPSHL)for advanced gastric cancer(GC)by Huang’s three-step maneuver.METHODS A total of 643 patients who underwent SPSHL were recruited from April 2012 to July 2017,including 35 patients who underwent robotic SPSHL(RSPSHL)and 608 who underwent laparoscopic SPSHL(LSPSHL).One-to-four propensity score matching was used to analyze the differences in clinical data between patients who underwent robotic SPSHL and those who underwent laparoscopic SPSHL.RESULTS In all,175 patients were matched,including 35 patients who underwent RSPSHL and 140 who underwent LSPSHL.After matching,there were no significant differences detected in the baseline characteristics between the two groups.Significant differences in total operative time,estimated blood loss(EBL),splenic hilar blood loss(SHBL),splenic hilar dissection time(SHDT),and splenic trunk dissection time were evident between these groups(P<0.05).Furthermore,no significant differences were observed between the two groups in the overall noncompliance rate of lymph node(LN)dissection(62.9%vs 60%,P=0.757),number of retrieved No.10 LNs(3.1±1.4 vs 3.3±2.5,P=0.650),total number of examined LNs(37.8±13.1 vs 40.6±13.6,P=0.274),and postoperative complications(14.3%vs 17.9%,P=0.616).A stratified analysis that divided the patients receiving RSPSHL into an early group(EG)and a late group(LG)revealed that the LG experienced obvious improvements in SHDT and length of stay compared with the EG(P<0.05).Logistic regression showed that robotic surgery was a significantly protective factor against both SHBL and SHDT(P<0.05).CONCLUSION RSPSHL is safe and feasible,especially after overcoming the early learning curve,as this procedure results in a radical curative effect equivalent to that of LSPSHL.展开更多
An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for...An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.展开更多
Based on the study of the harmonic suppression on DC side of the multi-pulse rectification system,a software platform is established in Matlab environment.The phase-shift angle is studied from the aspects of system st...Based on the study of the harmonic suppression on DC side of the multi-pulse rectification system,a software platform is established in Matlab environment.The phase-shift angle is studied from the aspects of system stability and economy,analyzing the effects of phase-shift angle on the input-side line current,the output-side voltage ripple,the equivalent capacity of autotransformer and other auxiliary devices in 12-pulse rectifier system.The software platform can complete the analysis only by inputting the initial conditions,eliminating the derivation of the intermediate formula and reducing the complexity of the system analysis,and have good scalability.The simulation results show that the system can effectively analyze the influence of phase angle on 12-pulse star-connected transformer.展开更多
The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step meth...The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the so,gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flowerlike structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties.展开更多
基金supported in part by the Hubei Provincial Science and Technology Major Project of China(Grant No.2020AEA011)in part by the National Ethnic Affairs Commission of the People’s Republic of China(Training Program for Young and Middle-aged Talents)(No:MZR20007)+4 种基金in part by the National Natural Science Foundation of China(Grant No.61902437)in part by the Hubei Provincial Natural Science Foundation of China(Grant No.2020CFB629)in part by the Application Foundation Frontier Project of Wuhan Science and Technology Program(Grant No.2020020601012267)in part by the Fundamental Research Funds for the Central Universities,South-Central MinZu University(No:CZQ21026)in part by the Special Project on Regional Collaborative Innovation of Xinjiang Uygur Autonomous Region(Plan to Aid Xinjiang with Science and Technology)(2022E02035)。
文摘The path planning of Unmanned Aerial Vehicle(UAV)is a critical issue in emergency communication and rescue operations,especially in adversarial urban environments.Due to the continuity of the flying space,complex building obstacles,and the aircraft's high dynamics,traditional algorithms cannot find the optimal collision-free flying path between the UAV station and the destination.Accordingly,in this paper,we study the fast UAV path planning problem in a 3D urban environment from a source point to a target point and propose a Three-Step Experience Buffer Deep Deterministic Policy Gradient(TSEB-DDPG)algorithm.We first build the 3D model of a complex urban environment with buildings and project the 3D building surface into many 2D geometric shapes.After transformation,we propose the Hierarchical Learning Particle Swarm Optimization(HL-PSO)to obtain the empirical path.Then,to ensure the accuracy of the obtained paths,the empirical path,the collision information and fast transition information are stored in the three experience buffers of the TSEB-DDPG algorithm as dynamic guidance information.The sampling ratio of each buffer is dynamically adapted to the training stages.Moreover,we designed a reward mechanism to improve the convergence speed of the DDPG algorithm for UAV path planning.The proposed TSEB-DDPG algorithm has also been compared to three widely used competitors experimentally,and the results show that the TSEB-DDPG algorithm can archive the fastest convergence speed and the highest accuracy.We also conduct experiments in real scenarios and compare the real path planning obtained by the HL-PSO algorithm,DDPG algorithm,and TSEB-DDPG algorithm.The results show that the TSEBDDPG algorithm can archive almost the best in terms of accuracy,the average time of actual path planning,and the success rate.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61905039)Jilin Scientific and Technological Development Program, China (Grant No. 20190701018GH)+1 种基金Education Department of Jilin Province, China (Grant No. JJKH20190691KJ)State Key Laboratory of Applied Optics.
文摘An accurate and fast three-step self-calibrating generalized phase-shifting interferomertry(SGPSI) is proposed. In this approach, two new phase-shifting signals are constructed by the difference interferograms normalization and noise suppressing, then the unknown phase shift between the two difference phase-shifting signals is estimated quickly through searching the minimum coefficient of variation of the modulation amplitude, a limited number of pixels are selected to participate in the search process to further save time, and finally the phase is reconstructed through the searched phase shift. Through the reconstruction of phase map by the simulation and experiment, and the comparison with several mature algorithms, the good performance of the proposed algorithm is proved, and it eliminates the limitation of requiring more than three phase-shifting interferograms for high-precision SGPSI. We expect this method to be widely used in the future.
基金Project supported by the Science and Technology Major Projects of Zhejiang Province,China(Grant No.2013C03043-5)
文摘Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.
基金supported by the National Basic Research Program of China(Grant No.2011CB302903)the National Natural Science Foundation of China(Grant Nos.61272084 and 61202004)the Key Project of Natural Science Research of Jiangsu University,China(Grant No.11KJA520002)
文摘In this paper, we propose an encryption scheme based on phase-shifting digital interferometry. According to the original system framework, we add a random amplitude mask and replace the Fourier transform by the Fresnel transform. We develop a mathematical model and give a discrete formula based on the scheme, which makes it easy to implement the scheme in computer programming. The experimental results show that the improved system has a better performance in security than the original encryption method. Moreover, it demonstrates a good capability of anti-noise and anti-shear robustness.
文摘A phase-shifting digital holography scheme developed to investigate internal defects in artworks is described. Phase-shifting is utilized to obtain a clear reconstructed object wave from a rough surface texture. A reverse-transform algorithm is employed to reconstruct the object wave on its original position of unknown distance or the imaging position from the object wave information on the holographic plane. To get the clearest reconstruction the exact registration of the unknown distance is determined by applying the intensity sum as the auto-focusing function, The spatial resolution of the reconstruction image is also investigated for a variety of affecting factors. Laboratory results of reconstruction images under deformation are presented.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61775121,61307003,61405122,and 11574311)Key R&D Program of Shandong Province,China(Grant No.2018GGX101002)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.R2016FM03)the Fundamental Research Funds of Shandong University,China(Grant No.2015GN031)
文摘A multiple-image encryption method based on two-step phase-shifting interferometry (PSI) and spatial multiplexing of a smooth compressed signal is proposed. In the encoding and encryption process, with the help of four index matrices to store original pixel positions, all the pixels of four secret images are firstly reordered in an ascending order; then, the four reordered images are transformed by five-order Haar wavelet transform and performed sparseness operation. After Arnold transform and pixels sampling operation, one combined image can be grouped with the aid of compressive sensing (CS) and spatial multiplexing techniques. Finally, putting the combined image at the input plane of the PSI encryption scheme, only two interferograms ciphertexts can be obtained. During the decoding and decryption, utilizing all the secret key groups and index matrices keys, all the original secret images can be successfully decrypted by a wave-front retrieval algorithm of two-step PSI, spatial de-multiplexing, inverse Arnold transform, inverse discrete wavelet transform, and pixels reordering operation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51175479 and U1704155)the Natural Science Foundation of Henan Province,China(Grant Nos.16A140035 and 18A140032)the Program for Innovative Research Team(in Science and Technique)in the University of Henan Province,China(Grant No.18IRTSTHN016)。
文摘Fresnel incoherent correlation holography(FINCH)has the ability to generate three-dimensional images with a superresolution by using incoherent sources.However,there are unwanted direct current term and twin image in interferograms,so it is of great significance to find a method to eliminate them.Phase-shifting technology is a most widely used technique for this task,but its three-step phase-shifting is not suitable for the instantaneous measurement of dynamic objects,and the quality of reconstructed image with the traditional two-step phase-shifting is lower.In this paper,we present a method of enhancing the resolution through using a two-step phase-shifting technology based on the discrete wavelet transform.After two-step phase-shifting,the resulting hologram is a superposition of multiple forms.The frequency of the resulting hologram is decomposed into different levels through using discrete wavelet transform,then the image is reconstructed after retrieving the low frequency band.Various experiments have verified the effectiveness of this method.
基金This work was supported in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200969(L.Z.,URL:http://std.jiangsu.gov.cn/)in part by the Natural Science Foundation for Universities of Jiangsu Province under Grant 20KJB520008(Y.Y.,URL:http://jyt.jiangsu.gov.cn/)+2 种基金in part by the Nantong Science and Technology Plan Project under Grant JC2020148(Y.Y.,URL:http://kjj.nantong.gov.cn/)JC2020151(Y.C.,URL:http://kjj.nantong.gov.cn/)JC2019095(L.R.,URL:http://kjj.nantong.gov.cn/).
文摘focus of all countries.As an effective new energy,the fuel cell has attracted the attention of scholars.However,due to the particularity of proton exchange membrane fuel cell(PEMFC),the performance of traditional PI controlled phase-shifted full-bridge power electronics DC-DC converter cannot meet the needs of practical application.In order to further improve the dynamic performance of the converter,this paper first introduces several main topologies of the current mainstream front-end DC-DC converter,and analyzes their performance in the fuel cell system.Then,the operation process of the phase-shifted fullbridge power electronics DC-DC converter is introduced,and the shortcomings of the traditional PI control are analyzed.Finally,a double closed-loop adaptive fuzzy PI controller is proposed,which is characterized by dynamically adjusting PI parameters according to different working states to complete the intelligent control of phase-shifted full-bridge DC-DC converter.The simulation results in MATLAB/Simulink show that the proposed algorithm has good a control effect.Compared with the traditional algorithm,the overshoot and stabilization time of the system are shorter.The algorithm can effectively suppress the fluctuation of the output current of the fuel cell converter,and is a very practical control method.
文摘A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.
基金financially supported by the National Natural Science Foundation of China(No.11604243)Natural Science FoundationofTianjin(Nos.23JCYBJC00150and 16JCQNJC01600)State Key Laboratory of Quantum Optics and Quantum Optics Devices(No.KF202206)。
文摘In this Letter,we innovatively present general analytical expressions for arbitrary n-step phase-shifting Fourier single-pixel imaging(FSI).We also design experiments capable of implementing arbitrary n-step phase-shifting FSI and compare the experimental results,including the image quality,for 3-to 6-step phase-shifting cases without loss of generality.These results suggest that,compared to the 4-step method,these FSI approaches with a larger number of steps exhibit enhanced robustness against noise while ensuring no increase in data-acquisition time.These approaches provide us with more strategies to perform FSI for different steps,which could offer guidance in balancing the tradeoff between the image quality and the number of steps encountered in the application of FSI.
基金Projects(51134007,51201186)supported by the National Natural Science Foundation of ChinaProject(51327902)supported by the Major Research Equipment Development,China+1 种基金Projects(2012CB619502,2010CB731701)supported by the National Basic Research Program of ChinaProject(12JJ6040)supported by the Natural Science Foundation of Hunan Province,China
文摘The effects of a novel three-step aging process (T76+T6) on the electrochemical corrosion behavior of 7150 extruded aluminum alloy were evaluated and compared with those of the conventional retrogression and re-aging process (T77). The open circuit potential (OCP), cyclic polarization and electrochemical impedance spectra (EIS) of the A1 alloys were measured after treatment in three solutions (3.5% NaCl (mass fraction); 10 mmol/L NaCl + 0.1 mol/L Na2SO4; 4 mol/L NaCl + 0.5 mol/L KNO3 + 0.1 mol/L HNO3). The parameters including the corrosion potential, pitting potential, pit transition potential and steepness, and potential differences were extensively discussed to evaluate the corrosion behavior of the Al alloys. The electrochemical and scanning electron microscopy (SEM) data show that compared with the 7150-T77 Al alloy, the T76 + T6 aged 7150 A1 alloy exhibits better resistance to pitting corrosion, inter-granular corrosion (IGC) and exfoliation corrosion, which is attributed to further coarsening and inter-spacing of the grain boundary particles (GBPs) as revealed by transmission electron microscopy. Furthermore, the hardness tests indicate that an attractive combination of strength and corrosion resistance was obtained for the 7150 Al alloy with T76 + T6 treatment.
基金Projects(2016YFB0300901,2016YFB0300902)supported by the National Key Research and Development Program of ChinaProject(51375503)supported by the National Natural Science Foundation of ChinaProject(2013A017)supported by Guangxi Zhuangzu Autonomous Region of China
文摘The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow strain rate tests, electron probe microanalysis, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results revealed that three-step homogenization improved the uniformity of Zr distribution by eliminating segregation of the main alloying elements. During the second homogenization step at 350 °C for 10 h, coarse and strip-like equilibrium η phases formed which assisted the nucleation of Al3Zr dispersoids and reduced the width of the precipitate-free zone of A13Zr dispersoids. As a result, coarse recrystallization was greatly reduced after homogenization at 200 °C, 2 h + 350 °C, 10 h + 470 °C, 12 h, which contributed to improving the overall properties of the 7N01 aluminum alloys.
基金supported by the National Natural Science Foundation of China(No.41274124)the National Science and Technology Major Project(No.2016ZX05014-001-008HZ)
文摘Aliased surface waves are caused by large-space sampling intervals in three- dimensional seismic exploration and most current surface-wave suppression methods fail to account for. Thus, we propose a surface-wave suppression method using phase-shift and phase-filtering, named the PSPF method, in which linear phase-shift is performed to solve the coupled problem of surface and reflected waves in the FKXKY domain and then used phase and FKXKY filtering to attenuate the surface-wave energy. Processing of model and field data suggest that the PSPF method can reduce the surface-wave energy while maintaining the low-frequency information of the reflected waves.
基金Project(2012CB619502)supported by the National Basic Research Program of ChinaProject(2016YFB0300800)supported by the National Key Research and Development Program of China+1 种基金Project(CALT201507)supported by the CALT Research Innovation Partnership Fund,ChinaProject(HPCM-201403)supported by the State Key Laboratory of High Performance Complex Manufacturing,China
文摘The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.
基金the National Natural Science Foundation of China(No.10672065).
文摘2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to solve such an issue. In the measurement, two properchosen frequency gratings are utilized to synthesize an equivalent wavelength grating which ensures the computed phase in a principal phase range. Thus, the error caused by the phase unwrapping process with the conventional phase reconstruct algorithm can be eliminated. Finally, experimental result of a specimen with large plastic deformation is given to prove that the proposed method is effective to handle the phase discontinuity.
基金the Open Fund(PLC201104)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology)the National Natural Science Foundation of China(No.61072073)the Key Project of Education Commission of Sichuan Province(No.10ZA072)
文摘Although the phase-shift seismic processing method has characteristics of high accuracy, good stability, high efficiency, and high-dip imaging, it is not able to adapt to strong lateral velocity variation. To overcome this defect, a finite-difference method in the frequency-space domain is introduced in the migration process, because it can adapt to strong lateral velocity variation and the coefficient is optimized by a hybrid genetic and simulated annealing algorithm. The two measures improve the precision of the approximation dispersion equation. Thus, the imaging effect is improved for areas of high-dip structure and strong lateral velocity variation. The migration imaging of a 2-D SEG/EAGE salt dome model proves that a better imaging effect in these areas is achieved by optimized phase-shift migration operator plus a finite-difference method based on a hybrid genetic and simulated annealing algorithm. The method proposed in this paper is better than conventional methods in imaging of areas of high-dip angle and strong lateral velocity variation.
基金Supported by the Scientific and Technological Innovation Joint Capital Projects of Fujian Province,China,No.2016Y9031the Construction Project of Fujian Province Minimally Invasive Medical Center,No.[2017]171+2 种基金the Second-batch Special Support Funds for Fujian Province Innovation and Entrepreneurship Talents,No.2016B013Science and Technology Innovation Joint Fund Project of Fujian Province,No.2017Y9004the Special Fund for Clinical Research of the Wu Jieping Medical Foundation,No.320.6750.17511
文摘BACKGROUND Robotic surgery has been considered to be significantly better than laparoscopic surgery for complicated procedures.AIM To explore the short-term effect of robotic and laparoscopic spleen-preserving splenic hilar lymphadenectomy(SPSHL)for advanced gastric cancer(GC)by Huang’s three-step maneuver.METHODS A total of 643 patients who underwent SPSHL were recruited from April 2012 to July 2017,including 35 patients who underwent robotic SPSHL(RSPSHL)and 608 who underwent laparoscopic SPSHL(LSPSHL).One-to-four propensity score matching was used to analyze the differences in clinical data between patients who underwent robotic SPSHL and those who underwent laparoscopic SPSHL.RESULTS In all,175 patients were matched,including 35 patients who underwent RSPSHL and 140 who underwent LSPSHL.After matching,there were no significant differences detected in the baseline characteristics between the two groups.Significant differences in total operative time,estimated blood loss(EBL),splenic hilar blood loss(SHBL),splenic hilar dissection time(SHDT),and splenic trunk dissection time were evident between these groups(P<0.05).Furthermore,no significant differences were observed between the two groups in the overall noncompliance rate of lymph node(LN)dissection(62.9%vs 60%,P=0.757),number of retrieved No.10 LNs(3.1±1.4 vs 3.3±2.5,P=0.650),total number of examined LNs(37.8±13.1 vs 40.6±13.6,P=0.274),and postoperative complications(14.3%vs 17.9%,P=0.616).A stratified analysis that divided the patients receiving RSPSHL into an early group(EG)and a late group(LG)revealed that the LG experienced obvious improvements in SHDT and length of stay compared with the EG(P<0.05).Logistic regression showed that robotic surgery was a significantly protective factor against both SHBL and SHDT(P<0.05).CONCLUSION RSPSHL is safe and feasible,especially after overcoming the early learning curve,as this procedure results in a radical curative effect equivalent to that of LSPSHL.
基金Project supported by the National Natural Science Foundation of China (No.10472061)
文摘An auxiliary principle technique to study a class of generalized set-valued strongly nonlinear mixed variational-like inequalities is extended. The existence and uniqueness of the solution of the auxiliary problem for the generalized set-valued strongly nonlinear mixed variational-like inequalities are proved, a novel and innovative three-step iterative algorithm to compute approximate solution is constructed, and the existence of the solution of the generalized set-valued strongly nonlinear mixed variational-like inequality is shown using the auxiliary principle iterative sequences generated by the algorithm technique. The convergence of three-step is also proved.
基金National Natural Science Foundation of China(Nos.51367010,51867012)Lanzhou City Talent Innovation and Entrepreneurship Science and Technology Program Subsidy(No.2017-RC-51)。
文摘Based on the study of the harmonic suppression on DC side of the multi-pulse rectification system,a software platform is established in Matlab environment.The phase-shift angle is studied from the aspects of system stability and economy,analyzing the effects of phase-shift angle on the input-side line current,the output-side voltage ripple,the equivalent capacity of autotransformer and other auxiliary devices in 12-pulse rectifier system.The software platform can complete the analysis only by inputting the initial conditions,eliminating the derivation of the intermediate formula and reducing the complexity of the system analysis,and have good scalability.The simulation results show that the system can effectively analyze the influence of phase angle on 12-pulse star-connected transformer.
基金supported by the Science Fund of Anhui Province,China(Grant No 070414187)the National Fund for Fostering Talents in Basic Science of China(Grant No J0630319/J0103)
文摘The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the so,gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flowerlike structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties.