On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-d...On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-dimethylimidazolium dimethyl phosphate (NH3-[Mmim]DMP) and NH3-1-ethyl-3-methylimidazolium ethylsulfate (NH3-[Emim]EtOSO3) binary systems, the interaction parameters of 14 new groups have been regressed by means of the UNIFAC model. To validate the reliability of the method, these parameters have been used to calculate the VLE data with the average relative deviation of pressures of less than 9.35%. The infinite dilution activity coefficient ( γ1∞ ) and the absorption potential ( φ1 ) are important evaluation criterions of the affinity between working pair species of the absorption cycle. The UNIFAC model is implemented to predict the values of and φ1 of t6 sets of NH3-ionic liquid (1L) systems. The work found that the φ1 gradually increases following the impact order: φ1([Cnmim][BF4])〈φ1([Cnmim]EtOSO3)〈φ1([Cnmim]DMP)〈φ1([Cnmim]Ac) (n= 1, 2, 3, … ) at a given cation of IL species and constant temperature, and φ1([Mmim]X)〈φ1([Emim]X)〈φ1([Pmim]X)〈 φ1([Bmim]X)(X= Ac, [BF4], DMP or EtOSO3) at a given anion of IL species and constant temperature. Furthermore, the φ1 gradually increases with increasing temperature. Then, it could be concluded that the working pair NH3-[BmimlAc has the best potential research value relatively.展开更多
This work correlated the detailed work zone location and time data from the Wis LCS system with the five-min inductive loop detector data. One-sample percentile value test and two-sample Kolmogorov-Smirnov(K-S) test w...This work correlated the detailed work zone location and time data from the Wis LCS system with the five-min inductive loop detector data. One-sample percentile value test and two-sample Kolmogorov-Smirnov(K-S) test were applied to compare the speed and flow characteristics between work zone and non-work zone conditions. Furthermore, we analyzed the mobility characteristics of freeway work zones within the urban area of Milwaukee, WI, USA. More than 50% of investigated work zones have experienced speed reduction and 15%-30% is necessary reduced volumes. Speed reduction was more significant within and at the downstream of work zones than at the upstream.展开更多
Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fl...Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.展开更多
In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the in...In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy.展开更多
According to the railway transportation system's characteristics, a new cellular automaton model for the single- line railway system is presented in this paper. Based on this model, several simulations were done to i...According to the railway transportation system's characteristics, a new cellular automaton model for the single- line railway system is presented in this paper. Based on this model, several simulations were done to imitate the train operation under three working diagrams. From a different angle the results show how the organization of train operation impacts on the railway carrying capacity. By using the non-parallel train working diagram the influence of fast-train on slow-train is found to be the strongest. Many slow-trains have to wait in-between neighbouring stations to let the fast-train(s) pass through first. So the slow-train will advance like a wave propagating from the departure station to the arrival station. This also resembles the situation of a highway jammed traffic flow. Furthermore, the nonuniformity of travel times between the sections also greatly limits the railway carrying capacity. After converting the nonuniform sections into the sections with uniform travel times while the total travel time is kept unchanged, all three carrying capacities are improved greatly as shown by simulation. It also shows that the cellular automaton model is an effective and feasible way to investigate the railway transportation system.展开更多
Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and m...Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.展开更多
Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous...Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.展开更多
Objective:To explore and analyze the work process-based practical training teaching model for basic nursing skills in vocational colleges and its implementation effects.Methods:A total of 82 nursing students from our ...Objective:To explore and analyze the work process-based practical training teaching model for basic nursing skills in vocational colleges and its implementation effects.Methods:A total of 82 nursing students from our school were selected for the study,which was conducted from April 2023 to April 2024.Using a random number table method,the students were divided into an observation group and a control group,each with 41 students.The control group received conventional practical training teaching,while the observation group followed the work process-based practical training model for basic nursing skills.The assessment scores and teaching satisfaction of the two groups were compared.Results:The comparison of assessment scores showed that the observation group performed significantly better than the control group(P<0.05).The comparison of teaching satisfaction also indicated that the observation group had significantly higher satisfaction than the control group(P<0.05).Conclusion:The work process-based practical training teaching model for basic nursing skills in vocational colleges can improve students’assessment scores and enhance teaching satisfaction,demonstrating its value for wider application.展开更多
Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biase...Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biasedness and inconsistency in the estimated parameters in the stop frequency models. Additionally, previous studies on the stop frequency have mostly been done in larger metropolitan areas and less attention has been paid to the areas with less population. This study addresses these gaps by using 2012 travel data from a medium sized U.S. urban area using the work tour for the case study. Stop in the work tour were classified into three groups of outbound leg, work based subtour, and inbound leg of the commutes. Latent Class Poisson Regression Models were used to analyze the data. The results indicate the presence of heterogeneity across the commuters. Using latent class models significantly improves the predictive power of the models compared to regular one class Poisson regression models. In contrast to one class Poisson models, gender becomes insignificant in predicting the number of tours when unobserved heterogeneity is accounted for. The commuters are associated with increased stops on their work based subtour when the employment density of service-related occupations increases in their work zone, but employment density of retail employment does not significantly contribute to the stop making likelihood of the commuters. Additionally, an increase in the number of work tours was associated with fewer stops on the inbound leg of the commute. The results of this study suggest the consideration of unobserved heterogeneity in the stop frequency models and help transportation agencies and policy makers make better inferences from such models.展开更多
In order to shorten the design cycle of the excavator working device, we have proposed a rapid modeling method for the excavator working device which uses parameters. Based on the Pro/toolkit, which is secondary devel...In order to shorten the design cycle of the excavator working device, we have proposed a rapid modeling method for the excavator working device which uses parameters. Based on the Pro/toolkit, which is secondary development tool of Pro/E4.0,and combined with Vs C++2005 programming software. It developed a flexible set of MFC visualization-friendly interfaces. Users can enter data in the visual interface according to their needs and it will generate a new part model quickly. So it improves the design quality, shortens the design cycle, and makes the cost lower significantly.展开更多
For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dyna...For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shockabsorber and implemented in MATLAB software package. Using the model it is possible to evaluate theimportance of different factors for design of the shock absorber. In the meantime, the key-modelmachine is designed for coupling dynamic test. Comparisons with experimental results confirm thevalidity of the model. So the CAD/CAE software has been developed in MATLAB for design andexperimental test of the new coupling shock absorber.展开更多
Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics.In this paper,investigation was made through the applicatio...Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics.In this paper,investigation was made through the application of structural equation modeling to study the nature of relationships between the influencing/associating personal factors and work injury and their sequential relationships leading towards work injury occurrences in underground coal mines.Six variables namely,rebelliousness,negative affectivity,job boredom,job dissatisfaction and work injury were considered in this study.Instruments were developed to quantify them through a questionnaire survey.Underground mine workers were randomly selected for the survey.Responses from 300 participants were used for the analysis.The structural model of LISREL was used to estimate the interrelationships amongst the variables.The case study results show that negative affectivity and job boredom induce more job dissatisfaction to the workers whereas risk taking attitude of the individual is positively influenced by job dissatisfaction as well as by rebelliousness characteristics of the individual.Finally,risk taking and job dissatisfaction are having positive significant direct relationship with work injury.The findings of this study clearly reveal that rebelliousness,negative affectivity and job boredom are the three key personal factors influencing work related injuries in mines that need to be addressed properly through effective safety programs.展开更多
The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different ...The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1) + CH3OH(2)/C2H5OH(2) + [BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult's Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs.展开更多
基金Supported by the National Natural Science Foundation of China(50890184,51276010)the National Basic Research Program of China(2010CB227304)
文摘On the basis of reported experimental vapor-liquid equilibrium (VLE) data of NH3-1-ethyl-3-methylimidazolium acetate (NH3-[Emim]Ac), NH3-1-butyl-3-methylimidazolium tetrafluoroborate (NH3-[Bmim][BF4]), NH3-1,3-dimethylimidazolium dimethyl phosphate (NH3-[Mmim]DMP) and NH3-1-ethyl-3-methylimidazolium ethylsulfate (NH3-[Emim]EtOSO3) binary systems, the interaction parameters of 14 new groups have been regressed by means of the UNIFAC model. To validate the reliability of the method, these parameters have been used to calculate the VLE data with the average relative deviation of pressures of less than 9.35%. The infinite dilution activity coefficient ( γ1∞ ) and the absorption potential ( φ1 ) are important evaluation criterions of the affinity between working pair species of the absorption cycle. The UNIFAC model is implemented to predict the values of and φ1 of t6 sets of NH3-ionic liquid (1L) systems. The work found that the φ1 gradually increases following the impact order: φ1([Cnmim][BF4])〈φ1([Cnmim]EtOSO3)〈φ1([Cnmim]DMP)〈φ1([Cnmim]Ac) (n= 1, 2, 3, … ) at a given cation of IL species and constant temperature, and φ1([Mmim]X)〈φ1([Emim]X)〈φ1([Pmim]X)〈 φ1([Bmim]X)(X= Ac, [BF4], DMP or EtOSO3) at a given anion of IL species and constant temperature. Furthermore, the φ1 gradually increases with increasing temperature. Then, it could be concluded that the working pair NH3-[BmimlAc has the best potential research value relatively.
基金Project(61620106002)supported by the National Natural Science Foundation of ChinaProject(2016YFB0100906)supported by the National Key R&D Program in China+1 种基金Project(2015364X16030)supported by the Information Technology Research Project of Ministry of Transport of ChinaProject(2242015K42132)supported by the Fundamental Sciences of Southeast University,China
文摘This work correlated the detailed work zone location and time data from the Wis LCS system with the five-min inductive loop detector data. One-sample percentile value test and two-sample Kolmogorov-Smirnov(K-S) test were applied to compare the speed and flow characteristics between work zone and non-work zone conditions. Furthermore, we analyzed the mobility characteristics of freeway work zones within the urban area of Milwaukee, WI, USA. More than 50% of investigated work zones have experienced speed reduction and 15%-30% is necessary reduced volumes. Speed reduction was more significant within and at the downstream of work zones than at the upstream.
基金Projects (51175518,51705147) supported by the National Natural Science Foundation of China
文摘Effects of working parameters on performance characteristics of hydrostatic turntable are researched by applying the fluid-structure-thermal coupled model.Fluid-structure interaction(FSI)technique and computational fluid dynamics(CFD)method are both employed by this new model,and thermal effects are also considered.Hydrostatic turntable systems with a series of oil supply pressures,various oil recess depth and several surface roughness parameters are studied.Performance parameters,such as turntable displacement,system flow rate,temperature rise of lubrication,stiffness and damping coefficients,are derived from different working parameters(rotational speed of turntable and exerted external load)of the hydrostatic turntable.Numerical results obtained from this FSI-thermal model are presented and discussed,and theoretical predictions are in good agreement with the experimental data.Therefore,this developed model is a very useful tool for studying hydrostatic turntables.The calculation results show that in order to obtain better performance,a rational selection of the design parameters is essential.
基金funding supported by National Natural Science Foundation of China(No.52175285)Beijing Municipal Natural Science Foundation(No.3182025)+1 种基金National Defense Science and Technology Rapid support Project(No.61409230113)Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB and Fundamental Research Funds for the Central Universities(No.FRFBD-20-08A,FRF-TP-20-009A2)。
文摘In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy.
文摘According to the railway transportation system's characteristics, a new cellular automaton model for the single- line railway system is presented in this paper. Based on this model, several simulations were done to imitate the train operation under three working diagrams. From a different angle the results show how the organization of train operation impacts on the railway carrying capacity. By using the non-parallel train working diagram the influence of fast-train on slow-train is found to be the strongest. Many slow-trains have to wait in-between neighbouring stations to let the fast-train(s) pass through first. So the slow-train will advance like a wave propagating from the departure station to the arrival station. This also resembles the situation of a highway jammed traffic flow. Furthermore, the nonuniformity of travel times between the sections also greatly limits the railway carrying capacity. After converting the nonuniform sections into the sections with uniform travel times while the total travel time is kept unchanged, all three carrying capacities are improved greatly as shown by simulation. It also shows that the cellular automaton model is an effective and feasible way to investigate the railway transportation system.
基金Supported by National Natural Science Foundation of China(Grant No.51835009).
文摘Gear fault diagnosis technologies have received rapid development and been effectively implemented in many engineering applications.However,the various working conditions would degrade the diagnostic performance and make gear fault diagnosis(GFD)more and more challenging.In this paper,a novel model parameter transfer(NMPT)is proposed to boost the performance of GFD under varying working conditions.Based on the previous transfer strategy that controls empirical risk of source domain,this method further integrates the superiorities of multi-task learning with the idea of transfer learning(TL)to acquire transferable knowledge by minimizing the discrepancies of separating hyperplanes between one specific working condition(target domain)and another(source domain),and then transferring both commonality and specialty parameters over tasks to make use of source domain samples to assist target GFD task when sufficient labeled samples from target domain are unavailable.For NMPT implementation,insufficient target domain features and abundant source domain features with supervised information are fed into NMPT model to train a robust classifier for target GFD task.Related experiments prove that NMPT is expected to be a valuable technology to boost practical GFD performance under various working conditions.The proposed methods provides a transfer learning-based framework to handle the problem of insufficient training samples in target task caused by variable operation conditions.
文摘Energy methods and the principle of virtual work are commonly used for obtaining solutions of boundary value problems (BVPs) and initial value problems (IVPs) associated with homogeneous, isotropic and non-homogeneous, non-isotropic matter without using (or in the absence of) the mathematical models of the BVPs and the IVPs. These methods are also used for deriving mathematical models for BVPs and IVPs associated with isotropic, homogeneous as well as non-homogeneous, non-isotropic continuous matter. In energy methods when applied to IVPs, one constructs energy functional (<i>I</i>) consisting of kinetic energy, strain energy and the potential energy of loads. The first variation of this energy functional (<em>δI</em>) set to zero is a necessary condition for an extremum of <i>I</i>. In this approach one could use <i>δI</i> = 0 directly in constructing computational processes such as the finite element method or could derive Euler’s equations (differential or partial differential equations) from <i>δI</i> = 0, which is also satisfied by a solution obtained from <i>δI</i> = 0. The Euler’s equations obtained from <i>δI</i> = 0 indeed are the mathematical model associated with the energy functional <i>I</i>. In case of BVPs we follow the same approach except in this case, the energy functional <i>I</i> consists of strain energy and the potential energy of loads. In using the principle of virtual work for BVPs and the IVPs, we can also accomplish the same as described above using energy methods. In this paper we investigate consistency and validity of the mathematical models for isotropic, homogeneous and non-isotropic, non-homogeneous continuous matter for BVPs that are derived using energy functional consisting of strain energy and the potential energy of loads. Similar investigation is also presented for IVPs using energy functional consisting of kinetic energy, strain energy and the potential energy of loads. The computational approaches for BVPs and the IVPs designed using energy functional and principle of virtual work, their consistency and validity are also investigated. Classical continuum mechanics (CCM) principles <i>i.e.</i> conservation and balance laws of CCM with consistent constitutive theories and the elements of calculus of variations are employed in the investigations presented in this paper.
文摘Objective:To explore and analyze the work process-based practical training teaching model for basic nursing skills in vocational colleges and its implementation effects.Methods:A total of 82 nursing students from our school were selected for the study,which was conducted from April 2023 to April 2024.Using a random number table method,the students were divided into an observation group and a control group,each with 41 students.The control group received conventional practical training teaching,while the observation group followed the work process-based practical training model for basic nursing skills.The assessment scores and teaching satisfaction of the two groups were compared.Results:The comparison of assessment scores showed that the observation group performed significantly better than the control group(P<0.05).The comparison of teaching satisfaction also indicated that the observation group had significantly higher satisfaction than the control group(P<0.05).Conclusion:The work process-based practical training teaching model for basic nursing skills in vocational colleges can improve students’assessment scores and enhance teaching satisfaction,demonstrating its value for wider application.
文摘Stop frequency models, as one of the elements of activity based models, represent an important part of travel behavior. Unobserved heterogeneity across the travelers should be taken into consideration to prevent biasedness and inconsistency in the estimated parameters in the stop frequency models. Additionally, previous studies on the stop frequency have mostly been done in larger metropolitan areas and less attention has been paid to the areas with less population. This study addresses these gaps by using 2012 travel data from a medium sized U.S. urban area using the work tour for the case study. Stop in the work tour were classified into three groups of outbound leg, work based subtour, and inbound leg of the commutes. Latent Class Poisson Regression Models were used to analyze the data. The results indicate the presence of heterogeneity across the commuters. Using latent class models significantly improves the predictive power of the models compared to regular one class Poisson regression models. In contrast to one class Poisson models, gender becomes insignificant in predicting the number of tours when unobserved heterogeneity is accounted for. The commuters are associated with increased stops on their work based subtour when the employment density of service-related occupations increases in their work zone, but employment density of retail employment does not significantly contribute to the stop making likelihood of the commuters. Additionally, an increase in the number of work tours was associated with fewer stops on the inbound leg of the commute. The results of this study suggest the consideration of unobserved heterogeneity in the stop frequency models and help transportation agencies and policy makers make better inferences from such models.
文摘In order to shorten the design cycle of the excavator working device, we have proposed a rapid modeling method for the excavator working device which uses parameters. Based on the Pro/toolkit, which is secondary development tool of Pro/E4.0,and combined with Vs C++2005 programming software. It developed a flexible set of MFC visualization-friendly interfaces. Users can enter data in the visual interface according to their needs and it will generate a new part model quickly. So it improves the design quality, shortens the design cycle, and makes the cost lower significantly.
基金This project is supported by National Defense Science Foundation of China(No.00J16.2.5DZ0502)and Provincial Natural Science Foundation of Guangxi of China(No.0141042).
文摘For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shockabsorber and implemented in MATLAB software package. Using the model it is possible to evaluate theimportance of different factors for design of the shock absorber. In the meantime, the key-modelmachine is designed for coupling dynamic test. Comparisons with experimental results confirm thevalidity of the model. So the CAD/CAE software has been developed in MATLAB for design andexperimental test of the new coupling shock absorber.
文摘Work injuries in mines are complex and generally characterized by several factors starting from personal to technical and technical to social characteristics.In this paper,investigation was made through the application of structural equation modeling to study the nature of relationships between the influencing/associating personal factors and work injury and their sequential relationships leading towards work injury occurrences in underground coal mines.Six variables namely,rebelliousness,negative affectivity,job boredom,job dissatisfaction and work injury were considered in this study.Instruments were developed to quantify them through a questionnaire survey.Underground mine workers were randomly selected for the survey.Responses from 300 participants were used for the analysis.The structural model of LISREL was used to estimate the interrelationships amongst the variables.The case study results show that negative affectivity and job boredom induce more job dissatisfaction to the workers whereas risk taking attitude of the individual is positively influenced by job dissatisfaction as well as by rebelliousness characteristics of the individual.Finally,risk taking and job dissatisfaction are having positive significant direct relationship with work injury.The findings of this study clearly reveal that rebelliousness,negative affectivity and job boredom are the three key personal factors influencing work related injuries in mines that need to be addressed properly through effective safety programs.
基金Supported by the National Natural Science Foundation of China (51076021)
文摘The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1) + [BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1) + CH3OH(2)/C2H5OH(2) + [BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult's Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs.