引入环形压电阵列及主动Lamb波损伤概率检测成像算法(reconstruction algorithm for probabilistic inspection of damage,简称RAPID)监测技术对金属结构裂纹损伤的定量监测进行研究。基于裂纹损伤对响应信号直达波的作用机理,根据裂纹...引入环形压电阵列及主动Lamb波损伤概率检测成像算法(reconstruction algorithm for probabilistic inspection of damage,简称RAPID)监测技术对金属结构裂纹损伤的定量监测进行研究。基于裂纹损伤对响应信号直达波的作用机理,根据裂纹损伤对交叉监测路径下的响应信号变化差异性,提出十字交叉扫描方法判定裂纹方向,进而对平行或近似平行裂纹的监测路径的损伤差异性系数(signal difference coefficient,简称SDC)值进行校正,强化了裂纹方向的重构信息,完成了裂纹损伤的图像重构和定量化评估。针对不同位置及方向裂纹的监测和成像,在铝板上进行了实验验证。结果表明,提出的十字交叉扫描方法以及改进RAPID成像方法较好地识别了裂纹方向,能够定量显示裂纹长度。展开更多
A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased ar...A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased array and satisfy the near field calculation formula.Near field acoustic information of defects is obscured by the nonlinear effects of initial wave signal in a directly acquired response using the full matrix capture mode.A reconstructed full matrix of inter-element responses is produced from cross-correlation of directly received ultrasonic signals between sensor pairs.This new matrix eliminates the nonlinear interference and restores the near-field defect information.The topological imaging method that was developed in recent ultrasonic inspection is used for displaying the scatterers.The experiments are conducted on both thin aluminum plates containing two and four defects, respectively.The results show that these defects are clearly identified when using a reconstructed full matrix.The spatial resolution is equal to about one wavelength of the selectively excited mode and the identifiable defect is about one fifth of the wavelength.However, in a conventional directly captured image,the images of defects overlap together and cannot be distinguished.The proposed method reduces the background noise and allows for effective topological imaging of near field defects.展开更多
文摘引入环形压电阵列及主动Lamb波损伤概率检测成像算法(reconstruction algorithm for probabilistic inspection of damage,简称RAPID)监测技术对金属结构裂纹损伤的定量监测进行研究。基于裂纹损伤对响应信号直达波的作用机理,根据裂纹损伤对交叉监测路径下的响应信号变化差异性,提出十字交叉扫描方法判定裂纹方向,进而对平行或近似平行裂纹的监测路径的损伤差异性系数(signal difference coefficient,简称SDC)值进行校正,强化了裂纹方向的重构信息,完成了裂纹损伤的图像重构和定量化评估。针对不同位置及方向裂纹的监测和成像,在铝板上进行了实验验证。结果表明,提出的十字交叉扫描方法以及改进RAPID成像方法较好地识别了裂纹方向,能够定量显示裂纹长度。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674214 and 11874255)
文摘A method of combining Green’s function retrieval theory and ultrasonic array imaging using Lamb waves is presented to solve near filed defects in thin aluminum plates.The defects are close to the ultrasonic phased array and satisfy the near field calculation formula.Near field acoustic information of defects is obscured by the nonlinear effects of initial wave signal in a directly acquired response using the full matrix capture mode.A reconstructed full matrix of inter-element responses is produced from cross-correlation of directly received ultrasonic signals between sensor pairs.This new matrix eliminates the nonlinear interference and restores the near-field defect information.The topological imaging method that was developed in recent ultrasonic inspection is used for displaying the scatterers.The experiments are conducted on both thin aluminum plates containing two and four defects, respectively.The results show that these defects are clearly identified when using a reconstructed full matrix.The spatial resolution is equal to about one wavelength of the selectively excited mode and the identifiable defect is about one fifth of the wavelength.However, in a conventional directly captured image,the images of defects overlap together and cannot be distinguished.The proposed method reduces the background noise and allows for effective topological imaging of near field defects.