Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with resp...Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.展开更多
Rough set theory plays an important role in knowledge discovery, but cannot deal with continuous attributes, thus discretization is a problem which we cannot neglect. And discretization of decision systems in rough se...Rough set theory plays an important role in knowledge discovery, but cannot deal with continuous attributes, thus discretization is a problem which we cannot neglect. And discretization of decision systems in rough set theory has some particular characteristics. Consistency must be satisfied and cuts for discretization is expected to be as small as possible. Consistent and minimal discretization problem is NP-complete. In this paper, an immune algorithm for the problem is proposed. The correctness and effectiveness were shown in experiments. The discretization method presented in this paper can also be used as a data pre- treating step for other symbolic knowledge discovery or machine learning methods other than rough set theory.展开更多
It is more and more important to analyse and process complex data for gaining more valuable knowledge and making more accurate decisions.The multigranulation decision theory based on conditional probability and cost l...It is more and more important to analyse and process complex data for gaining more valuable knowledge and making more accurate decisions.The multigranulation decision theory based on conditional probability and cost loss has the advantage of processing decision-making problems from multi-levels and multi-angles,and the neighbourhood rough set model(NRS)can facilitate the analysis and processing of numerical or mixed type data,and can address the limitation of multigranulation decision-theoretic rough sets(MG-DTRS),which is not easy to cope with complex data.Based on the in-depth study of hybrid-valued decision systems and MG-DTRS models,this study analysed neigh-bourhood MG-DTRS(NMG-DTRS)deeply by fusing MG-DTRS and NRS;a matrix-based approach for approximation sets of NMG-DTRS model was proposed on the basis of the matrix representations of concepts;the positive,boundary and negative domains were constructed from the matrix perspective,and the concept of positive decision recognition rate was introduced.Furthermore,the authors explored the related properties of NMG-DTRS model,and designed and described the corresponding solving algorithms in detail.Finally,some experimental results that were employed not only verified the effectiveness and feasibility of the proposed algorithm,but also showed the relationship between the decision recognition rate and the granularity and threshold.展开更多
In this paper,we present a proposed method for generating a soft rough approximation as a modification and generalization of Zhaowen et al.approach.Comparisons were obtained between our approach and the previous study...In this paper,we present a proposed method for generating a soft rough approximation as a modification and generalization of Zhaowen et al.approach.Comparisons were obtained between our approach and the previous study and also.Eventually,an application on Coronavirus(COVID-19)has been presented,illustrated using our proposed concept,and some influencing results for symptoms of Coronavirus patients have been deduced.Moreover,following these concepts,we construct an algorithm and apply it to a decision-making problem to demonstrate the applicability of our proposed approach.Finally,a proposed approach that competes with others has been obtained,as well as realistic results for patients with Coronavirus.Moreover,we used MATLAB programming to obtain the results;these results are consistent with those of theWorld Health Organization and an accurate proposal competing with the method of Zhaowen et al.has been studied.Therefore,it is recommended that our proposed concept be used in future decision making.展开更多
For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many ...For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.展开更多
Decision trees induction algorithms have been used for classification in a wide range of application domains. In the process of constructing a tree, the criteria of selecting test attributes will influence the classif...Decision trees induction algorithms have been used for classification in a wide range of application domains. In the process of constructing a tree, the criteria of selecting test attributes will influence the classification accuracy of the tree.In this paper,the degree of dependency of decision attribute to condition attribute,based on rough set theory,is used as a heuristic for selecting the attribute that will best separate the samples into individual classes.The result of an example shows that compared with the entropy-based approach,our approach is a better way to select nodes for constructing decision trees.展开更多
A variable precision rough set (VPRS) model is used to solve the multi-attribute decision analysis (MADA) problem with multiple conflicting decision attributes and multiple condition attributes. By introducing confide...A variable precision rough set (VPRS) model is used to solve the multi-attribute decision analysis (MADA) problem with multiple conflicting decision attributes and multiple condition attributes. By introducing confidence measures and a β-reduct, the VPRS model can rationally solve the conflicting decision analysis problem with multiple decision attributes and multiple condition attributes. For illustration, a medical diagnosis example is utilized to show the feasibility of the VPRS model in solving the MADA problem with multiple decision attributes and multiple condition attributes. Empirical results show that the decision rule with the highest confidence measures will be used as the final decision rules in the MADA problem with multiple conflicting decision attributes and multiple condition attributes if there are some conflicts among decision rules resulting from multiple decision attributes. The confidence-measure-based VPRS model can effectively solve the conflicts of decision rules from multiple decision attributes and thus a class of MADA problem with multiple conflicting decision attributes and multiple condition attributes are solved.展开更多
The classical rough set can not show the fuzziness and the importance of objects in decision procedure because it uses definite form to express each object. In order to solve this problem,this paper firstly introduces...The classical rough set can not show the fuzziness and the importance of objects in decision procedure because it uses definite form to express each object. In order to solve this problem,this paper firstly introduces a special decision table in which each object has a membership degree to show its fuzziness and has been assigned a weight to show its importance in decision procedure. Then,the special decision table is studied and the relevant rough set model is provided. In the meantime,relevant definitions and theorems are proposed. On the above basis,an attribute reduction algorithm is presented. Finally,feasibility of the relevant rough set model and the presented attribute reduction algorithm are verified by an example.展开更多
To make decisions about event series is part of our life, and to discover knowledge from these decisions is of great significance in the field of controlling and decision-making. The paper takes event series as the ex...To make decisions about event series is part of our life, and to discover knowledge from these decisions is of great significance in the field of controlling and decision-making. The paper takes event series as the exterior form of movements with the dynamic attributes, and gets the Markov transition probabilities matrix to express those attributes with statistics. First, according to the matrix, the decision table is constructed. Then, by reducing attributes based on rough set theory, the decision table is reduced, and the decision rules are acquired as well. Finally we make the decision through defining rule distance and taking the minimum rule distance as decision principle. Followed is an example, which proves that the algorithm is feasible and effective to the event series decision.展开更多
Computer aided process planning(CAPP) is an important content of computer integrated manufacturing, and intelligentizing is the orientation of development of CAPP. Process planning has characters of empirical and ti...Computer aided process planning(CAPP) is an important content of computer integrated manufacturing, and intelligentizing is the orientation of development of CAPP. Process planning has characters of empirical and time-consuming to finalize, and the same technical aim always can be achieved by different process schemes, so intelligentizing of process decision making always be a difficult point of CAPP and computer integrated manufacturing (CIM). For the purpose of intelligent aided process decision making and reuse of process resource, this paper proposed a decision making method based on rough sets(RS) and regular distance computing. The main contents and methods of process planning decision making are analyzed under agile response manufacturing environment, the concept of process knowledge granule is represented, and the methods of process knowledge granule partitioning and granularity analysis are put forward. Based on the theory of RS and combined the method of process attributes importance identification, the paper brought forward a computing model for process scheme regulation distance under the same attribute conditions, and conflict resolution strategy was introduced to acquire process scheme fit for actual situation of enterprise's manufacturing resources, so as to realize process resources' conflict resolution and quick excavate and reuse of enterprises' existing process knowledge, to advance measures of process decision making and improve the rationality and capability of agile response of process planning.展开更多
The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
With granular computing point of view,this paper first presents a novel rough set model with a multigranulation view,called pessimistic rough decision,where set approximations are defined through using consistent gran...With granular computing point of view,this paper first presents a novel rough set model with a multigranulation view,called pessimistic rough decision,where set approximations are defined through using consistent granules among multiple granular spaces on the universe.Then,we investigate several important properties of the pessimistic rough decision model.With introduction of the rough set model,we have developed two types of multigranulation rough sets(MGRS):optimistic rough decision and pessimistic rough decision. These multigranulation rough set models provide a kind of effective approach for problem solving in the context of multi granulations.展开更多
Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the l...Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the linguistic three-way group decision steps are provided. Specifically, the experts determine the lower bound and upper bound of the uncertainty region, respectively. When the evaluation is superior to the upper bound, the corresponding alternative is put into the acceptance region directly. Similarly, when the evaluation is inferior to the lower bound, the corresponding alternative is put into the rejection region directly, and the remaining alternatives are put into the uncertain region. Moreover, the objects in the uncertainty region are especially discussed. The linguistic terms are transformed into fuzzy numbers and then aggregated. Finally, a recommendation example is provided to illustrate the practicality and validity of the proposed method.展开更多
With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent...With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent times.It is essential for decision makers to make reliable and reasonable emergency decisions within a short span of time,since inappropriate decisions may result in enormous economic losses and social disorder.To handle emergency effectively and quickly,this paper proposes a new EDM method based on the novel concept of q-rung orthopair fuzzy rough(q-ROPR)set.A novel list of q-ROFR aggregation information,detailed description of the fundamental characteristics of the developed aggregation operators and the q-ROFR entropy measure that determine the unknown weight information of decision makers as well as the criteria weights are specified.Further an algorithm is given to tackle the uncertain scenario in emergency to give reliable and reasonable emergency decisions.By using proposed list of q-ROFR aggregation information all emergency alternatives are ranked to get the optimal one.Besides this,the q-ROFR entropy measure method is used to determine criteria and experts’weights objectively in the EDM process.Finally,through an illustrative example of COVID-19 analysis is compared with existing EDM methods.The results verify the effectiveness and practicability of the proposed methodology.展开更多
文摘Multi-attribute decision problems where the performances of the alternatives are random variables are considered. The suggested approach grades the probabilities of preference of one alternative over another with respect to the same attribute. Based on the graded probabilistic dominance relation, the pairwise comparison information table is defined. The global preferences of the decision maker can be seen as a rough binary relation. The present paper proposes to approximate this preference relation by means of the graded probabilistic dominance relation with respect to the subsets of attributes. At last, the method is illustrated by an example.
基金Project supported by the National Basic Research Program (973)of China (No. 2002CB312106), China Postdoctoral Science Founda-tion (No. 2004035715), the Science & Technology Program of Zhe-jiang Province (No. 2004C31098), and the Postdoctoral Foundation of Zhejiang Province (No. 2004-bsh-023), China
文摘Rough set theory plays an important role in knowledge discovery, but cannot deal with continuous attributes, thus discretization is a problem which we cannot neglect. And discretization of decision systems in rough set theory has some particular characteristics. Consistency must be satisfied and cuts for discretization is expected to be as small as possible. Consistent and minimal discretization problem is NP-complete. In this paper, an immune algorithm for the problem is proposed. The correctness and effectiveness were shown in experiments. The discretization method presented in this paper can also be used as a data pre- treating step for other symbolic knowledge discovery or machine learning methods other than rough set theory.
基金the Universities Natural Science Key Project of Anhui Province,Grant/Award Number:KJ2020A0637。
文摘It is more and more important to analyse and process complex data for gaining more valuable knowledge and making more accurate decisions.The multigranulation decision theory based on conditional probability and cost loss has the advantage of processing decision-making problems from multi-levels and multi-angles,and the neighbourhood rough set model(NRS)can facilitate the analysis and processing of numerical or mixed type data,and can address the limitation of multigranulation decision-theoretic rough sets(MG-DTRS),which is not easy to cope with complex data.Based on the in-depth study of hybrid-valued decision systems and MG-DTRS models,this study analysed neigh-bourhood MG-DTRS(NMG-DTRS)deeply by fusing MG-DTRS and NRS;a matrix-based approach for approximation sets of NMG-DTRS model was proposed on the basis of the matrix representations of concepts;the positive,boundary and negative domains were constructed from the matrix perspective,and the concept of positive decision recognition rate was introduced.Furthermore,the authors explored the related properties of NMG-DTRS model,and designed and described the corresponding solving algorithms in detail.Finally,some experimental results that were employed not only verified the effectiveness and feasibility of the proposed algorithm,but also showed the relationship between the decision recognition rate and the granularity and threshold.
基金This research received funding from Taif University,Researchers Supporting and Project Number(TURSP-2020/207),Taif University,Taif,Saudi Arabia.
文摘In this paper,we present a proposed method for generating a soft rough approximation as a modification and generalization of Zhaowen et al.approach.Comparisons were obtained between our approach and the previous study and also.Eventually,an application on Coronavirus(COVID-19)has been presented,illustrated using our proposed concept,and some influencing results for symptoms of Coronavirus patients have been deduced.Moreover,following these concepts,we construct an algorithm and apply it to a decision-making problem to demonstrate the applicability of our proposed approach.Finally,a proposed approach that competes with others has been obtained,as well as realistic results for patients with Coronavirus.Moreover,we used MATLAB programming to obtain the results;these results are consistent with those of theWorld Health Organization and an accurate proposal competing with the method of Zhaowen et al.has been studied.Therefore,it is recommended that our proposed concept be used in future decision making.
文摘For the moment, the representative and hot research is decision-theoretic rough set (DTRS) which provides a new viewpoint to deal with decision-making problems under risk and uncertainty, and has been applied in many fields. Based on rough set theory, Yao proposed the three-way decision theory which is a prolongation of the classical two-way decision approach. This paper investigates the probabilistic DTRS in the framework of intuitionistic fuzzy information system (IFIS). Firstly, based on IFIS, this paper constructs fuzzy approximate spaces and intuitionistic fuzzy (IF) approximate spaces by defining fuzzy equivalence relation and IF equivalence relation, respectively. And the fuzzy probabilistic spaces and IF probabilistic spaces are based on fuzzy approximate spaces and IF approximate spaces, respectively. Thus, the fuzzy probabilistic approximate spaces and the IF probabilistic approximate spaces are constructed, respectively. Then, based on the three-way decision theory, this paper structures DTRS approach model on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. So, the fuzzy decision-theoretic rough set (FDTRS) model and the intuitionistic fuzzy decision-theoretic rough set (IFDTRS) model are constructed on fuzzy probabilistic approximate spaces and IF probabilistic approximate spaces, respectively. Finally, based on the above DTRS model, some illustrative examples about the risk investment of projects are introduced to make decision analysis. Furthermore, the effectiveness of this method is verified.
文摘Decision trees induction algorithms have been used for classification in a wide range of application domains. In the process of constructing a tree, the criteria of selecting test attributes will influence the classification accuracy of the tree.In this paper,the degree of dependency of decision attribute to condition attribute,based on rough set theory,is used as a heuristic for selecting the attribute that will best separate the samples into individual classes.The result of an example shows that compared with the entropy-based approach,our approach is a better way to select nodes for constructing decision trees.
基金The National Natural Science Foundation of China (No.70221001)the Knowledge Innovation Program of Chinese Academyof Sciences (No.3547600)Strategy Research Grant of City University of Hong Kong (No.7001677)
文摘A variable precision rough set (VPRS) model is used to solve the multi-attribute decision analysis (MADA) problem with multiple conflicting decision attributes and multiple condition attributes. By introducing confidence measures and a β-reduct, the VPRS model can rationally solve the conflicting decision analysis problem with multiple decision attributes and multiple condition attributes. For illustration, a medical diagnosis example is utilized to show the feasibility of the VPRS model in solving the MADA problem with multiple decision attributes and multiple condition attributes. Empirical results show that the decision rule with the highest confidence measures will be used as the final decision rules in the MADA problem with multiple conflicting decision attributes and multiple condition attributes if there are some conflicts among decision rules resulting from multiple decision attributes. The confidence-measure-based VPRS model can effectively solve the conflicts of decision rules from multiple decision attributes and thus a class of MADA problem with multiple conflicting decision attributes and multiple condition attributes are solved.
基金supported by the Foundation and Frontier Technologies Research Plan Projects of Henan Province of China under Grant No. 102300410266
文摘The classical rough set can not show the fuzziness and the importance of objects in decision procedure because it uses definite form to express each object. In order to solve this problem,this paper firstly introduces a special decision table in which each object has a membership degree to show its fuzziness and has been assigned a weight to show its importance in decision procedure. Then,the special decision table is studied and the relevant rough set model is provided. In the meantime,relevant definitions and theorems are proposed. On the above basis,an attribute reduction algorithm is presented. Finally,feasibility of the relevant rough set model and the presented attribute reduction algorithm are verified by an example.
基金Supported by the National Natural Science Foundation of China (No.60474022)the Youth Found of Education Office in Sichuan Province , China (No.2006B044)
文摘To make decisions about event series is part of our life, and to discover knowledge from these decisions is of great significance in the field of controlling and decision-making. The paper takes event series as the exterior form of movements with the dynamic attributes, and gets the Markov transition probabilities matrix to express those attributes with statistics. First, according to the matrix, the decision table is constructed. Then, by reducing attributes based on rough set theory, the decision table is reduced, and the decision rules are acquired as well. Finally we make the decision through defining rule distance and taking the minimum rule distance as decision principle. Followed is an example, which proves that the algorithm is feasible and effective to the event series decision.
基金supported by National Key Technology R&D Program of China (Grant No. 2006BAF01A07)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z190)
文摘Computer aided process planning(CAPP) is an important content of computer integrated manufacturing, and intelligentizing is the orientation of development of CAPP. Process planning has characters of empirical and time-consuming to finalize, and the same technical aim always can be achieved by different process schemes, so intelligentizing of process decision making always be a difficult point of CAPP and computer integrated manufacturing (CIM). For the purpose of intelligent aided process decision making and reuse of process resource, this paper proposed a decision making method based on rough sets(RS) and regular distance computing. The main contents and methods of process planning decision making are analyzed under agile response manufacturing environment, the concept of process knowledge granule is represented, and the methods of process knowledge granule partitioning and granularity analysis are put forward. Based on the theory of RS and combined the method of process attributes importance identification, the paper brought forward a computing model for process scheme regulation distance under the same attribute conditions, and conflict resolution strategy was introduced to acquire process scheme fit for actual situation of enterprise's manufacturing resources, so as to realize process resources' conflict resolution and quick excavate and reuse of enterprises' existing process knowledge, to advance measures of process decision making and improve the rationality and capability of agile response of process planning.
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金supported by grants from the National Natural Science Foundation of China(Nos.60903110, 60773133 and 70971080)the Natural Science Foundation of Shanxi Province in China(Nos.2009021017-1, 2008011038).
文摘With granular computing point of view,this paper first presents a novel rough set model with a multigranulation view,called pessimistic rough decision,where set approximations are defined through using consistent granules among multiple granular spaces on the universe.Then,we investigate several important properties of the pessimistic rough decision model.With introduction of the rough set model,we have developed two types of multigranulation rough sets(MGRS):optimistic rough decision and pessimistic rough decision. These multigranulation rough set models provide a kind of effective approach for problem solving in the context of multi granulations.
基金The National Natural Science Foundation of China(No.71171048,71371049)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15-0190)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1567)
文摘Based on linguistic evaluations, a linguistic threeway decision method is proposed. First, the alternatives are rated in linguistic forms and divided into acceptance, rejection and uncertainty regions. Secondly, the linguistic three-way group decision steps are provided. Specifically, the experts determine the lower bound and upper bound of the uncertainty region, respectively. When the evaluation is superior to the upper bound, the corresponding alternative is put into the acceptance region directly. Similarly, when the evaluation is inferior to the lower bound, the corresponding alternative is put into the rejection region directly, and the remaining alternatives are put into the uncertain region. Moreover, the objects in the uncertainty region are especially discussed. The linguistic terms are transformed into fuzzy numbers and then aggregated. Finally, a recommendation example is provided to illustrate the practicality and validity of the proposed method.
基金This Project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under the Grant No.(G:578-135-1441)The authors,therefore,acknowledge with thanks DSR for technical and financial support.
文摘With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent times.It is essential for decision makers to make reliable and reasonable emergency decisions within a short span of time,since inappropriate decisions may result in enormous economic losses and social disorder.To handle emergency effectively and quickly,this paper proposes a new EDM method based on the novel concept of q-rung orthopair fuzzy rough(q-ROPR)set.A novel list of q-ROFR aggregation information,detailed description of the fundamental characteristics of the developed aggregation operators and the q-ROFR entropy measure that determine the unknown weight information of decision makers as well as the criteria weights are specified.Further an algorithm is given to tackle the uncertain scenario in emergency to give reliable and reasonable emergency decisions.By using proposed list of q-ROFR aggregation information all emergency alternatives are ranked to get the optimal one.Besides this,the q-ROFR entropy measure method is used to determine criteria and experts’weights objectively in the EDM process.Finally,through an illustrative example of COVID-19 analysis is compared with existing EDM methods.The results verify the effectiveness and practicability of the proposed methodology.