Human bocavirus(HBoV)1 is considered an important pathogen that mainly affects infants aged 6–24 months,but preventing viral transmission in resource-limited regions through rapid and affordable on-site diagnosis of ...Human bocavirus(HBoV)1 is considered an important pathogen that mainly affects infants aged 6–24 months,but preventing viral transmission in resource-limited regions through rapid and affordable on-site diagnosis of individuals with early infection of HBoV1 remains somewhat challenging.Herein,we present a novel faster,lower cost,reliable method for the detection of HBoV1,which integrates a recombinase polymerase amplification(RPA)assay with the CRISPR/Cas12a system,designated the RPA-Cas12a-fluorescence assay.The RPA-Cas12a-fluorescence system can specifically detect target gene levels as low as 0.5 copies of HBoV1 plasmid DNA per microliter within 40 min at 37℃without the need for sophisticated instruments.The method also demonstrates excellent specificity without cross-reactivity to non-target pathogens.Furthermore,the method was appraised using 28 clinical samples,and displayed high accuracy with positive and negative predictive agreement of 90.9%and 100%,respectively.Therefore,our proposed rapid and sensitive HBoV1 detection method,the RPA-Cas12a-fluorescence assay,shows promising potential for early on-site diagnosis of HBoV1 infection in the fields of public health and health care.The established RPA-Cas12a-fluorescence assay is rapid and reliable method for human bocavirus 1 detection.The RPA-Cas12a-fluorescence assay can be completed within 40 min with robust specificity and sensitivity of 0.5 copies/μl.展开更多
Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three t...Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus(SA),Pseudomonas aeruginosa(PA),and Acinetobacter baumannii(AB)in the bloodstream based on recombinant human mannanbinding lectin protein(M1 protein)-conjugated magnetic bead(M1 bead)enrichment of pathogens combined with RAP.Methods Recombinant plasmids were used to evaluate the assay sensitivity.Common blood influenza bacteria were used for the specific detection.Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR(M-RAP)and quantitative PCR(qPCR)assays.Kappa analysis was used to evaluate the consistency between the two assays.Results The M-RAP method had sensitivity rates of 1,10,and 1 copies/μL for the detection of SA,PA,and AB plasmids,respectively,without cross-reaction to other bacterial species.The M-RAP assay obtained results for<10 CFU/mL pathogens in the blood within 4 h,with higher sensitivity than qPCR.M-RAP and qPCR for SA,PA,and AB yielded Kappa values of 0.839,0.815,and 0.856,respectively(P<0.05).Conclusion An M-RAP assay for SA,PA,and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.展开更多
Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body imag...Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.展开更多
The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus.Here,we present a Human Angiotensin-converting-enzyme 2(ACE2)-functionalized gold“virus traps”nanostructure as an ...The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus.Here,we present a Human Angiotensin-converting-enzyme 2(ACE2)-functionalized gold“virus traps”nanostructure as an extremely sensitive SERS biosensor,to selectively capture and rapidly detect S-protein expressed coronavirus,such as the current SARS-CoV-2 in the contaminated water,down to the single-virus level.Such a SERS sensor features extraordinary 106-fold virus enrichment originating from high-affinity of ACE2 with S protein as well as“virus-traps”composed of oblique gold nanoneedles,and 109-fold enhancement of Raman signals originating from multi-component SERS effects.Furthermore,the identification standard of virus signals is established by machine-learning and identification techniques,resulting in an especially low detection limit of 80 copies mL^(−1) for the simulated contaminated water by SARS-CoV-2 virus with complex circumstance as short as 5 min,which is of great significance for achieving real-time monitoring and early warning of coronavirus.Moreover,here-developed method can be used to establish the identification standard for future unknown coronavirus,and immediately enable extremely sensitive and rapid detection of novel virus.展开更多
Low Resolution Thermal Array Sensors are widely used in several applications in indoor environments. In particular, one of these cheap, small and unobtrusive sensors provides a low-resolution thermal image of the envi...Low Resolution Thermal Array Sensors are widely used in several applications in indoor environments. In particular, one of these cheap, small and unobtrusive sensors provides a low-resolution thermal image of the environment and, unlike cameras;it is capable to detect human heat emission even in dark rooms. The obtained thermal data can be used to monitor older seniors while they are performing daily activities at home, to detect critical situations such as falls. Most of the studies in activity recognition using Thermal Array Sensors require human detection techniques to recognize humans passing in the sensor field of view. This paper aims to improve the accuracy of the algorithms used so far by considering the temperature environment variation. This method leverages an adaptive background estimation and a noise removal technique based on Kalman Filter. In order to properly validate the system, a novel installation of a single sensor has been implemented in a smart environment: the obtained results show an improvement in human detection accuracy with respect to the state of the art, especially in case of disturbed environments.展开更多
Human noroviruses(HuNoVs)are major foodborne pathogens that cause nonbacterial acute gastroenteritis worldwide.As the tissue-culture system for HuNoVs is not mature enough for routine detection of the virus,detection ...Human noroviruses(HuNoVs)are major foodborne pathogens that cause nonbacterial acute gastroenteritis worldwide.As the tissue-culture system for HuNoVs is not mature enough for routine detection of the virus,detection is mainly dependent on molecular approaches such as reverse transcription polymerase chain reaction(RT-PCR)and reverse transcription quantitative real-time polymerase chain reaction(RTqPCR).The widely used primers and probes for RT-qPCR were established in the early 2000s.As HuNoVs are highly variant viruses,viral genome mutations result in previously designed primers and/or probes that were perfectly matched working less efficiently over time.In this study,a new duplex RT-qPCR(ND-RT-qPCR)was designed for the detection of genogroup Ⅰ(GⅠ)and genogroup Ⅱ(GⅡ)HuNoVs based on an analysis of viral sequences added in the database after 2010.Using long transcribed viral RNAs,the results demonstrate that the sensitivity of ND-RT-qPCR is as low as one genomic copy for both GⅠ and GⅡ HuNoVs.The performance of ND-RT-qPCR was further evaluated by a comparison with the commonly used Kageyama primer/probe sets for RT-qPCR(Kageyama RT-qPCR)for 23 HuNoV-positive clinical samples.All five GⅠ samples were registered as positive by ND-RT-qPCR,whereas only two samples were registered as positive by Kageyama RT-qPCR.All 18 GⅡ samples were registered as positive by ND-RT-qPCR,while 17 samples were registered as positive by Kageyama RT-qPCR.The sensitivity reflected by the quantification cycle(Cq)value was lower in ND-RT-qPCR than in Kageyama RT-qPCR.Our data suggest that ND-RT-qPCR could be a good fit for the detection of current strains of HuNoVs.展开更多
A set of universal loop-mediated isothermal amplification (LAMP) primers targeting the flo gene was designed to detect Borrelia burgdorferi sensu lato (B. burgdorferi s.I.) in human samples. The sensitivity of LAM...A set of universal loop-mediated isothermal amplification (LAMP) primers targeting the flo gene was designed to detect Borrelia burgdorferi sensu lato (B. burgdorferi s.I.) in human samples. The sensitivity of LAMP was 20 copies/reaction, and the assay did not detect false positives among 11 other related bacteria. A positive LAMP result was obtained for 9 of the 24 confirmed cases and for 12 of 94 suspected cases. The positive rate of LAMP was the same as that of nested PCR. The LAMP is a useful diagnostic method that can be developed for rapid detection of B. burgdorferi s.I. in human sera. Combination of the LAMP and nested PCR was more sensitive for detecting B. burgdorferi s.I. in human serum samples.展开更多
Human pose estimation aims to localize the body joints from image or video data.With the development of deeplearning,pose estimation has become a hot research topic in the field of computer vision.In recent years,huma...Human pose estimation aims to localize the body joints from image or video data.With the development of deeplearning,pose estimation has become a hot research topic in the field of computer vision.In recent years,humanpose estimation has achieved great success in multiple fields such as animation and sports.However,to obtainaccurate positioning results,existing methods may suffer from large model sizes,a high number of parameters,and increased complexity,leading to high computing costs.In this paper,we propose a new lightweight featureencoder to construct a high-resolution network that reduces the number of parameters and lowers the computingcost.We also introduced a semantic enhancement module that improves global feature extraction and networkperformance by combining channel and spatial dimensions.Furthermore,we propose a dense connected spatialpyramid pooling module to compensate for the decrease in image resolution and information loss in the network.Finally,ourmethod effectively reduces the number of parameters and complexitywhile ensuring high performance.Extensive experiments show that our method achieves a competitive performance while dramatically reducing thenumber of parameters,and operational complexity.Specifically,our method can obtain 89.9%AP score on MPIIVAL,while the number of parameters and the complexity of operations were reduced by 41%and 36%,respectively.展开更多
By combining histogram of oriented gradient and histograms of shearlet coefficients, which analyzes images at multiple scales and orientations based on shearlet transforms, as the feature set, we proposed a novel hama...By combining histogram of oriented gradient and histograms of shearlet coefficients, which analyzes images at multiple scales and orientations based on shearlet transforms, as the feature set, we proposed a novel haman detection feature. We employ partial least squares analysis, an efficient dimensionality reduction technique, to project the feature onto a much lower dimensional subspace. We test it in INRIA person dataset by using a linear SVM, and it yields an error rate of 1.38% with a false negatives (FN) rate of 0.40% and a false positive (FP) rate of 0.98%, while the error rate of HOG is 7.11%, with a FN rate of 4.09% and a FP rate of 3.02%.展开更多
The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in ...The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample.展开更多
The number and variety of applications of artificial intelligence(AI)in gastr-ointestinal(GI)endoscopy is growing rapidly.New technologies based on machine learning(ML)and convolutional neural networks(CNNs)are at var...The number and variety of applications of artificial intelligence(AI)in gastr-ointestinal(GI)endoscopy is growing rapidly.New technologies based on machine learning(ML)and convolutional neural networks(CNNs)are at various stages of development and deployment to assist patients and endoscopists in preparing for endoscopic procedures,in detection,diagnosis and classification of pathology during endoscopy and in confirmation of key performance indicators.Platforms based on ML and CNNs require regulatory approval as medical devices.Interactions between humans and the technologies we use are complex and are influenced by design,behavioural and psychological elements.Due to the substantial differences between AI and prior technologies,important differences may be expected in how we interact with advice from AI technologies.Human-AI interaction(HAII)may be optimised by developing AI algorithms to minimise false positives and designing platform interfaces to maximise usability.Human factors influencing HAII may include automation bias,alarm fatigue,algorithm aversion,learning effect and deskilling.Each of these areas merits further study in the specific setting of AI applications in GI endoscopy and professional societies should engage to ensure that sufficient emphasis is placed on human-centred design in development of new AI technologies.展开更多
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp...Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.展开更多
According to recent research statistics,approximately 30%of people who experienced falls are over the age of 65.Therefore,it is meaningful research to detect it in time and take appropriate measures when falling behav...According to recent research statistics,approximately 30%of people who experienced falls are over the age of 65.Therefore,it is meaningful research to detect it in time and take appropriate measures when falling behavior occurs.In this paper,a fall detection model based on improved human posture estimation algorithm is proposed.The improved human posture estimation algorithm is implemented on the basis of Openpose.An im-proved strategy based on depthwise separable convolution combined with HDC structure is proposed.The depthwise separable convolution is used to replace the convolution neural network structure,which makes the network lightweight and reduces the redundant layer in the network.At the same time,in order to ensure that the image features are not lost and ensure the accuracy of detecting human joint points,HDC structure is introduced.Experiments show that the improved algorithm with HDC structure has higher accuracy in joint point detection.Then,human posture estimation is applied to fall detection research,and fall event modeling is carried out through fall feature extraction.The designed convolution neural network model is used to classify and distinguish falls.The experimental results show that our method achieves 98.53%,97.71%and 97.20%accuracy on three public fall detection data sets.Compared with the experimental results of other methods on the same data set,the model designed in this paper has a certain improvement in system accuracy.The sensitivity is also improved,which will reduce the error detection probability of the system.In addition,this paper also verifies the real-time performance of the model.Even if researchers are experimenting with low-level hardware,it can ensure a certain detection speed without too much delay.展开更多
Traditional human detection using pre-trained detectors tends to be computationally intensive for time-critical tracking tasks, and the detection rate is prone to be unsatisfying when occlusion, motion blur and body d...Traditional human detection using pre-trained detectors tends to be computationally intensive for time-critical tracking tasks, and the detection rate is prone to be unsatisfying when occlusion, motion blur and body deformation occur frequently. A spatial-confidential proposal filtering method(SCPF) is proposed for efficient and accurate human detection. It consists of two filtering phases: spatial proposal filtering and confidential proposal filtering. A compact spatial proposal is generated in the first phase to minimize the search space to reduce the computation cost. The human detector only estimates the confidence scores of the candidate search regions accepted by the spatial proposal instead of global scanning. At the second phase, each candidate search region is assigned with a supplementary confidence score according to their reliability estimated by the confidential proposal to reduce missing detections. The performance of the SCPF method is verified by extensive tests on several video sequences from available public datasets. Both quantitatively and qualitatively experimental results indicate that the proposed method can highly improve the efficiency and the accuracy of human detection.展开更多
Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for...Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.展开更多
A shadow detection method using pulse couple neural network inspired by the characters of human visual system is proposed.More precisely,lateral inhibition of human vision and coefficient of variation are combined tog...A shadow detection method using pulse couple neural network inspired by the characters of human visual system is proposed.More precisely,lateral inhibition of human vision and coefficient of variation are combined together to improve the pulse couple neural network.Shadow detection is considered to be a shadow region segmentation problem.Experiment shows that the presented method is consistent with human vision compared to shadow detection methods based on HSV and pulse couple neural network(PCNN) by both subjective and objective assessments.展开更多
Human dresses are different in thousands way. Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method o...Human dresses are different in thousands way. Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to the peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.展开更多
Human detection is important in many applications and has attracted significant attention over the last decade. The Histograms of Oriented Gradients (HOG) as effective local descriptors are used with binary sliding wi...Human detection is important in many applications and has attracted significant attention over the last decade. The Histograms of Oriented Gradients (HOG) as effective local descriptors are used with binary sliding window mechanism to achieve good detection performance. However, the computation of HOG under such framework is about billion times and the pure software implementation for HOG computation is hard to meet the real-time requirement. This study proposes a hardware architecture called One-HOG accelerator operated on FPGA of Xilinx Spartan-6 LX-150T that provides an efficient way to compute HOG such that an embedded real-time platform of HW/SW co-design for application to crowd estimation and analysis is achieved. The One-HOG accelerator mainly consists of gradient module and histogram module. The gradient module is for computing gradient magnitude and orientation;histogram module is for generating a 36-D HOG feature vector. In addition to hardware realization, a new method called Histograms-of-Oriented-Gradients AdaBoost Long-Feature-Vector (HOG-AdaBoost-LFV) human classifier is proposed to significantly decrease the number of times to compute the HOG without sacrificing detection performance. The experiment results from three static image and four video datasets demonstrate that the proposed SW/HW (software/hardware) co-design system is 13.14 times faster than the pure software computation of Dalal algorithm.展开更多
In this paper, a study and evaluation of the combination of GPS/GNSS techniques and advanced image processing algorithms for distressed human detection, positioning and tracking, from a fully autonomous Unmanned Aeria...In this paper, a study and evaluation of the combination of GPS/GNSS techniques and advanced image processing algorithms for distressed human detection, positioning and tracking, from a fully autonomous Unmanned Aerial Vehicle (UAV)-based rescue support system, </span><span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> presented. In particular, the issue of human detection both on terrestrial and marine environment under several illumination and background conditions, as the human silhouette in water differs significantly from a terrestrial one</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> is addressed. A robust approach, including an adaptive distressed human detection algorithm running every N input image frames combined with a much faster tracking algorithm, is proposed. Real time or near-real-time distressed human detection rates achieved, using a single, low cost day/night NIR camera mounted onboard a fully autonomous UAV for Search and Rescue (SAR) operations. Moreover, the generation of our own dataset, for the image processing algorithms training is also presented. Details about both hardware and software configuration as well as the assessment of the proposed approach performance are fully discussed. Last, a comparison of the proposed approach to other human detection methods used in the literature is presented.展开更多
基金Natural Science Foundation of ChinaGrant/Award Number:81973531+9 种基金Science and Technology Plan Project of Xi’anGrant/Award Number:22GXFW0007Shenzhen Science and Technology Innovation CommissionGrant/Award Number:20200812211704001Medical Scientific Research Foundation of Guangdong ProvinceGrant/Award Number:A2019502Nanshan District Science and Technology Plan ProjectGrant/Award Number:NS2022022Scientific Research Program Funded by Shaanxi Provincial Education DepartmentGrant/Award Number:22JC010
文摘Human bocavirus(HBoV)1 is considered an important pathogen that mainly affects infants aged 6–24 months,but preventing viral transmission in resource-limited regions through rapid and affordable on-site diagnosis of individuals with early infection of HBoV1 remains somewhat challenging.Herein,we present a novel faster,lower cost,reliable method for the detection of HBoV1,which integrates a recombinase polymerase amplification(RPA)assay with the CRISPR/Cas12a system,designated the RPA-Cas12a-fluorescence assay.The RPA-Cas12a-fluorescence system can specifically detect target gene levels as low as 0.5 copies of HBoV1 plasmid DNA per microliter within 40 min at 37℃without the need for sophisticated instruments.The method also demonstrates excellent specificity without cross-reactivity to non-target pathogens.Furthermore,the method was appraised using 28 clinical samples,and displayed high accuracy with positive and negative predictive agreement of 90.9%and 100%,respectively.Therefore,our proposed rapid and sensitive HBoV1 detection method,the RPA-Cas12a-fluorescence assay,shows promising potential for early on-site diagnosis of HBoV1 infection in the fields of public health and health care.The established RPA-Cas12a-fluorescence assay is rapid and reliable method for human bocavirus 1 detection.The RPA-Cas12a-fluorescence assay can be completed within 40 min with robust specificity and sensitivity of 0.5 copies/μl.
基金funded by the National Key R&D Program of China[2021YFC2301102]National Natural Science Foundation of China[82202593]Key R&D Program of Hebei Province[223777100D].
文摘Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus(SA),Pseudomonas aeruginosa(PA),and Acinetobacter baumannii(AB)in the bloodstream based on recombinant human mannanbinding lectin protein(M1 protein)-conjugated magnetic bead(M1 bead)enrichment of pathogens combined with RAP.Methods Recombinant plasmids were used to evaluate the assay sensitivity.Common blood influenza bacteria were used for the specific detection.Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR(M-RAP)and quantitative PCR(qPCR)assays.Kappa analysis was used to evaluate the consistency between the two assays.Results The M-RAP method had sensitivity rates of 1,10,and 1 copies/μL for the detection of SA,PA,and AB plasmids,respectively,without cross-reaction to other bacterial species.The M-RAP assay obtained results for<10 CFU/mL pathogens in the blood within 4 h,with higher sensitivity than qPCR.M-RAP and qPCR for SA,PA,and AB yielded Kappa values of 0.839,0.815,and 0.856,respectively(P<0.05).Conclusion An M-RAP assay for SA,PA,and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.
文摘Detecting feature points on the human body in video frames is a key step for tracking human movements. There have been methods developed that leverage models of human pose and classification of pixels of the body image. Yet, occlusion and robustness are still open challenges. In this paper, we present an automatic, model-free feature point detection and action tracking method using a time-of-flight camera. Our method automatically detects feature points for movement abstraction. To overcome errors caused by miss-detection and occlusion, a refinement method is devised that uses the trajectory of the feature points to correct the erroneous detections. Experiments were conducted using videos acquired with a Microsoft Kinect camera and a publicly available video set and comparisons were conducted with the state-of-the-art methods. The results demonstrated that our proposed method delivered improved and reliable performance with an average accuracy in the range of 90 %.The trajectorybased refinement also demonstrated satisfactory effectiveness that recovers the detection with a success rate of 93.7 %. Our method processed a frame in an average time of 71.1 ms.
基金the National Natural Science Foundation of China(No.51471182)this work is also supported by Shanghai international science and Technology Cooperation Fund(No.17520711700)the National Key Research and Development Project(No.2017YFB0310600).
文摘The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus.Here,we present a Human Angiotensin-converting-enzyme 2(ACE2)-functionalized gold“virus traps”nanostructure as an extremely sensitive SERS biosensor,to selectively capture and rapidly detect S-protein expressed coronavirus,such as the current SARS-CoV-2 in the contaminated water,down to the single-virus level.Such a SERS sensor features extraordinary 106-fold virus enrichment originating from high-affinity of ACE2 with S protein as well as“virus-traps”composed of oblique gold nanoneedles,and 109-fold enhancement of Raman signals originating from multi-component SERS effects.Furthermore,the identification standard of virus signals is established by machine-learning and identification techniques,resulting in an especially low detection limit of 80 copies mL^(−1) for the simulated contaminated water by SARS-CoV-2 virus with complex circumstance as short as 5 min,which is of great significance for achieving real-time monitoring and early warning of coronavirus.Moreover,here-developed method can be used to establish the identification standard for future unknown coronavirus,and immediately enable extremely sensitive and rapid detection of novel virus.
文摘Low Resolution Thermal Array Sensors are widely used in several applications in indoor environments. In particular, one of these cheap, small and unobtrusive sensors provides a low-resolution thermal image of the environment and, unlike cameras;it is capable to detect human heat emission even in dark rooms. The obtained thermal data can be used to monitor older seniors while they are performing daily activities at home, to detect critical situations such as falls. Most of the studies in activity recognition using Thermal Array Sensors require human detection techniques to recognize humans passing in the sensor field of view. This paper aims to improve the accuracy of the algorithms used so far by considering the temperature environment variation. This method leverages an adaptive background estimation and a noise removal technique based on Kalman Filter. In order to properly validate the system, a novel installation of a single sensor has been implemented in a smart environment: the obtained results show an improvement in human detection accuracy with respect to the state of the art, especially in case of disturbed environments.
基金supported by the Ministry of Science and Technology of China(2017YFC1601200)the National Natural Science Foundation of China(31772078)the Agri-X Interdisciplinary Fund of Shanghai Jiao Tong University(2017).
文摘Human noroviruses(HuNoVs)are major foodborne pathogens that cause nonbacterial acute gastroenteritis worldwide.As the tissue-culture system for HuNoVs is not mature enough for routine detection of the virus,detection is mainly dependent on molecular approaches such as reverse transcription polymerase chain reaction(RT-PCR)and reverse transcription quantitative real-time polymerase chain reaction(RTqPCR).The widely used primers and probes for RT-qPCR were established in the early 2000s.As HuNoVs are highly variant viruses,viral genome mutations result in previously designed primers and/or probes that were perfectly matched working less efficiently over time.In this study,a new duplex RT-qPCR(ND-RT-qPCR)was designed for the detection of genogroup Ⅰ(GⅠ)and genogroup Ⅱ(GⅡ)HuNoVs based on an analysis of viral sequences added in the database after 2010.Using long transcribed viral RNAs,the results demonstrate that the sensitivity of ND-RT-qPCR is as low as one genomic copy for both GⅠ and GⅡ HuNoVs.The performance of ND-RT-qPCR was further evaluated by a comparison with the commonly used Kageyama primer/probe sets for RT-qPCR(Kageyama RT-qPCR)for 23 HuNoV-positive clinical samples.All five GⅠ samples were registered as positive by ND-RT-qPCR,whereas only two samples were registered as positive by Kageyama RT-qPCR.All 18 GⅡ samples were registered as positive by ND-RT-qPCR,while 17 samples were registered as positive by Kageyama RT-qPCR.The sensitivity reflected by the quantification cycle(Cq)value was lower in ND-RT-qPCR than in Kageyama RT-qPCR.Our data suggest that ND-RT-qPCR could be a good fit for the detection of current strains of HuNoVs.
基金funded by the National Key Science and Technology Projects of China(2012ZX10004219 and 2013ZX10004001)
文摘A set of universal loop-mediated isothermal amplification (LAMP) primers targeting the flo gene was designed to detect Borrelia burgdorferi sensu lato (B. burgdorferi s.I.) in human samples. The sensitivity of LAMP was 20 copies/reaction, and the assay did not detect false positives among 11 other related bacteria. A positive LAMP result was obtained for 9 of the 24 confirmed cases and for 12 of 94 suspected cases. The positive rate of LAMP was the same as that of nested PCR. The LAMP is a useful diagnostic method that can be developed for rapid detection of B. burgdorferi s.I. in human sera. Combination of the LAMP and nested PCR was more sensitive for detecting B. burgdorferi s.I. in human serum samples.
基金the National Natural Science Foundation of China(Grant Number 62076246).
文摘Human pose estimation aims to localize the body joints from image or video data.With the development of deeplearning,pose estimation has become a hot research topic in the field of computer vision.In recent years,humanpose estimation has achieved great success in multiple fields such as animation and sports.However,to obtainaccurate positioning results,existing methods may suffer from large model sizes,a high number of parameters,and increased complexity,leading to high computing costs.In this paper,we propose a new lightweight featureencoder to construct a high-resolution network that reduces the number of parameters and lowers the computingcost.We also introduced a semantic enhancement module that improves global feature extraction and networkperformance by combining channel and spatial dimensions.Furthermore,we propose a dense connected spatialpyramid pooling module to compensate for the decrease in image resolution and information loss in the network.Finally,ourmethod effectively reduces the number of parameters and complexitywhile ensuring high performance.Extensive experiments show that our method achieves a competitive performance while dramatically reducing thenumber of parameters,and operational complexity.Specifically,our method can obtain 89.9%AP score on MPIIVAL,while the number of parameters and the complexity of operations were reduced by 41%and 36%,respectively.
基金Supported by the National Natural Science Foundations of China (No. 90820306)the natural science foundation of Jiangsu Province Youth Fund(No. BK2012399)
文摘By combining histogram of oriented gradient and histograms of shearlet coefficients, which analyzes images at multiple scales and orientations based on shearlet transforms, as the feature set, we proposed a novel haman detection feature. We employ partial least squares analysis, an efficient dimensionality reduction technique, to project the feature onto a much lower dimensional subspace. We test it in INRIA person dataset by using a linear SVM, and it yields an error rate of 1.38% with a false negatives (FN) rate of 0.40% and a false positive (FP) rate of 0.98%, while the error rate of HOG is 7.11%, with a FN rate of 4.09% and a FP rate of 3.02%.
基金supported by the Medical Special Cultivation Project of Anhui University of Science and Technology(Grant No.YZ2023H2B013)the Anhui Provincial Key Research and Development Project(Grant No.2022i01020015)the Open Project of Key Laboratory of Conveyance Equipment(East China Jiaotong University),Ministry of Education(KLCE2022-01).
文摘The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional(3D)method that takes into account self-occlusion,badly posedness,and a lack of depth data in the per-frame 3D posture estimation from two-dimensional(2D)mapping to 3D mapping.Firstly,by examining the relationship between the movements of different bones in the human body,four virtual skeletons are proposed to enhance the cyclic constraints of limb joints.Then,multiple parameters describing the skeleton are fused and projected into a high-dimensional space.Utilizing a multi-branch network,motion features between bones and overall motion features are extracted to mitigate the drift error in the estimation results.Furthermore,the estimated relative depth is projected into 3D space,and the error is calculated against real 3D data,forming a loss function along with the relative depth error.This article adopts the average joint pixel error as the primary performance metric.Compared to the benchmark approach,the estimation findings indicate an increase in average precision of 1.8 mm within the Human3.6M sample.
文摘The number and variety of applications of artificial intelligence(AI)in gastr-ointestinal(GI)endoscopy is growing rapidly.New technologies based on machine learning(ML)and convolutional neural networks(CNNs)are at various stages of development and deployment to assist patients and endoscopists in preparing for endoscopic procedures,in detection,diagnosis and classification of pathology during endoscopy and in confirmation of key performance indicators.Platforms based on ML and CNNs require regulatory approval as medical devices.Interactions between humans and the technologies we use are complex and are influenced by design,behavioural and psychological elements.Due to the substantial differences between AI and prior technologies,important differences may be expected in how we interact with advice from AI technologies.Human-AI interaction(HAII)may be optimised by developing AI algorithms to minimise false positives and designing platform interfaces to maximise usability.Human factors influencing HAII may include automation bias,alarm fatigue,algorithm aversion,learning effect and deskilling.Each of these areas merits further study in the specific setting of AI applications in GI endoscopy and professional societies should engage to ensure that sufficient emphasis is placed on human-centred design in development of new AI technologies.
基金This research was supported by the Third Xinjiang Scientific Expedition Program(2021xjkk010102)the National Natural Science Foundation of China(41261047,41761043)+1 种基金the Science and Technology Plan of Gansu Province,China(20YF3FA042)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University,Gansu Province,China(NWNU-LKQN-17-7).
文摘Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity.
文摘According to recent research statistics,approximately 30%of people who experienced falls are over the age of 65.Therefore,it is meaningful research to detect it in time and take appropriate measures when falling behavior occurs.In this paper,a fall detection model based on improved human posture estimation algorithm is proposed.The improved human posture estimation algorithm is implemented on the basis of Openpose.An im-proved strategy based on depthwise separable convolution combined with HDC structure is proposed.The depthwise separable convolution is used to replace the convolution neural network structure,which makes the network lightweight and reduces the redundant layer in the network.At the same time,in order to ensure that the image features are not lost and ensure the accuracy of detecting human joint points,HDC structure is introduced.Experiments show that the improved algorithm with HDC structure has higher accuracy in joint point detection.Then,human posture estimation is applied to fall detection research,and fall event modeling is carried out through fall feature extraction.The designed convolution neural network model is used to classify and distinguish falls.The experimental results show that our method achieves 98.53%,97.71%and 97.20%accuracy on three public fall detection data sets.Compared with the experimental results of other methods on the same data set,the model designed in this paper has a certain improvement in system accuracy.The sensitivity is also improved,which will reduce the error detection probability of the system.In addition,this paper also verifies the real-time performance of the model.Even if researchers are experimenting with low-level hardware,it can ensure a certain detection speed without too much delay.
基金Projects(61175096,60772063)supported by the National Natural Science Foundation of China
文摘Traditional human detection using pre-trained detectors tends to be computationally intensive for time-critical tracking tasks, and the detection rate is prone to be unsatisfying when occlusion, motion blur and body deformation occur frequently. A spatial-confidential proposal filtering method(SCPF) is proposed for efficient and accurate human detection. It consists of two filtering phases: spatial proposal filtering and confidential proposal filtering. A compact spatial proposal is generated in the first phase to minimize the search space to reduce the computation cost. The human detector only estimates the confidence scores of the candidate search regions accepted by the spatial proposal instead of global scanning. At the second phase, each candidate search region is assigned with a supplementary confidence score according to their reliability estimated by the confidential proposal to reduce missing detections. The performance of the SCPF method is verified by extensive tests on several video sequences from available public datasets. Both quantitatively and qualitatively experimental results indicate that the proposed method can highly improve the efficiency and the accuracy of human detection.
基金supported in part by the National Key Research and Development Program of China(No. 2018YFC0309104)the Construction System Science and Technology Project of Jiangsu Province (No.2021JH03)。
文摘Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.
基金Projects(61262032,61173122)supported by the National Natural Science Foundation of ChinaProject(12JJ038)supported by the Key Project of Natural Science Foundation of Hunan Province,China+1 种基金Project(2012FJ3100)supported by the Hunan Provincial Science&Technology Department,ChinaProject(12B103)supported by the Youth Project of Hunan Universities and Colleges Science Research,China
文摘A shadow detection method using pulse couple neural network inspired by the characters of human visual system is proposed.More precisely,lateral inhibition of human vision and coefficient of variation are combined together to improve the pulse couple neural network.Shadow detection is considered to be a shadow region segmentation problem.Experiment shows that the presented method is consistent with human vision compared to shadow detection methods based on HSV and pulse couple neural network(PCNN) by both subjective and objective assessments.
基金This work was supported by the natural science foundation of Henan province(004061000)
文摘Human dresses are different in thousands way. Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to the peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.
文摘Human detection is important in many applications and has attracted significant attention over the last decade. The Histograms of Oriented Gradients (HOG) as effective local descriptors are used with binary sliding window mechanism to achieve good detection performance. However, the computation of HOG under such framework is about billion times and the pure software implementation for HOG computation is hard to meet the real-time requirement. This study proposes a hardware architecture called One-HOG accelerator operated on FPGA of Xilinx Spartan-6 LX-150T that provides an efficient way to compute HOG such that an embedded real-time platform of HW/SW co-design for application to crowd estimation and analysis is achieved. The One-HOG accelerator mainly consists of gradient module and histogram module. The gradient module is for computing gradient magnitude and orientation;histogram module is for generating a 36-D HOG feature vector. In addition to hardware realization, a new method called Histograms-of-Oriented-Gradients AdaBoost Long-Feature-Vector (HOG-AdaBoost-LFV) human classifier is proposed to significantly decrease the number of times to compute the HOG without sacrificing detection performance. The experiment results from three static image and four video datasets demonstrate that the proposed SW/HW (software/hardware) co-design system is 13.14 times faster than the pure software computation of Dalal algorithm.
文摘In this paper, a study and evaluation of the combination of GPS/GNSS techniques and advanced image processing algorithms for distressed human detection, positioning and tracking, from a fully autonomous Unmanned Aerial Vehicle (UAV)-based rescue support system, </span><span style="font-family:Verdana;">are</span><span style="font-family:Verdana;"> presented. In particular, the issue of human detection both on terrestrial and marine environment under several illumination and background conditions, as the human silhouette in water differs significantly from a terrestrial one</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> is addressed. A robust approach, including an adaptive distressed human detection algorithm running every N input image frames combined with a much faster tracking algorithm, is proposed. Real time or near-real-time distressed human detection rates achieved, using a single, low cost day/night NIR camera mounted onboard a fully autonomous UAV for Search and Rescue (SAR) operations. Moreover, the generation of our own dataset, for the image processing algorithms training is also presented. Details about both hardware and software configuration as well as the assessment of the proposed approach performance are fully discussed. Last, a comparison of the proposed approach to other human detection methods used in the literature is presented.