Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the ...Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home.Although many target detection methods of UWB through-wall radar based on machine learning have been proposed,there is a lack of an opensource dataset to evaluate the performance of the algorithm.This published dataset is measured by impulse radio UWB(IR-UWB)through-wall radar system.Three test subjects are measured in different environments and several defined motion status.Using the presented dataset,we propose a human-motion-status recognition method using a convolutional neural network(CNN),and the detailed dataset partition method and the recognition process flow are given.On the well-trained network,the recognition accuracy of testing data for three kinds of motion status is higher than 99.7%.The dataset presented in this paper considers a simple environment.Therefore,we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar.展开更多
In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can b...In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.展开更多
In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not v...In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not visible in the image. In this work, an antenna planes-based wall clutter mitigation method was proposed. By using two imaging procedures in different scanning planes, this method can mitigate the wall clutter in both SAR and MIMO modes. The proposed method was tested using EM numerical data via the FDTD method. The processing results show that the imaging quality is improved significantly.展开更多
Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MB...Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.展开更多
基金This work was supported by the National Key Research and Development Program of China(2018YFC0810202)the National Defence Pre-research Foundation of China(61404130119).
文摘Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home.Although many target detection methods of UWB through-wall radar based on machine learning have been proposed,there is a lack of an opensource dataset to evaluate the performance of the algorithm.This published dataset is measured by impulse radio UWB(IR-UWB)through-wall radar system.Three test subjects are measured in different environments and several defined motion status.Using the presented dataset,we propose a human-motion-status recognition method using a convolutional neural network(CNN),and the detailed dataset partition method and the recognition process flow are given.On the well-trained network,the recognition accuracy of testing data for three kinds of motion status is higher than 99.7%.The dataset presented in this paper considers a simple environment.Therefore,we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar.
文摘In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.
基金Projects(61372161,61271441)supported by the National Natural Science Foundation of China
文摘In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not visible in the image. In this work, an antenna planes-based wall clutter mitigation method was proposed. By using two imaging procedures in different scanning planes, this method can mitigate the wall clutter in both SAR and MIMO modes. The proposed method was tested using EM numerical data via the FDTD method. The processing results show that the imaging quality is improved significantly.
基金National Natural Science Foundation of China(No.62293493)。
文摘Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.