In order to establish deformation history for the Cenozoic development of the Tibetan Plateau, we conducted geologic mapping along a 120km traverse between Nangqian and Yushu in the northeastern Qiangtang terrane. Thi...In order to establish deformation history for the Cenozoic development of the Tibetan Plateau, we conducted geologic mapping along a 120km traverse between Nangqian and Yushu in the northeastern Qiangtang terrane. This work reveals a complex interaction among Tertiary thrusting, strike\|slip faulting, sedimentation, and igneous activity. Two phases of deformation are recognized. The older northeast—southwest shortening, expressed by thrusting and folding, is followed by left\|slip faulting along northwest\|trending faults. Tertiary thrusts, predominantly southwest\|dipping, are distributed throughout the traverse, and typically juxtapose Mesozoic strata over Paleogene strata. The latter were deposited in several separated basins during folding and thrusting, as indicated by well\|developed growth strata. A preliminary construction of balanced cross\|sections suggests a minimum estimate of 45km of crustal shortening along the traverse. Numerous hypabyssal intrusions were mapped in the southern part of the traverse near Nangqian. They were emplaced into the Paleogene sediments and are dated between 36 and 33Ma by 40 Ar/ 39 Ar and U\|Pb methods. Paleogene sediments are also interbedded with volcanics in both the southern and northern parts of the study area. In the northernmost part of the traverse, a volcanic unit overlies a Tertiary thrust. This unit itself is broadly folded. This relationship suggests that Tertiary igneous activity was coeval with contractional deformation in the region, implying strongly the causal relationship between the two processes. The youngest event in the area is the development of northwest\|trending left\|slip faults. They cut Tertiary thrusts, folds, and about 35Ma igneous intrusions. In contrast to widely distributed Tertiary folds and thrusts, strike\|slip faulting is restricted only to the southern portion of our mapped area near Nangqian. The strike\|slip faults apparently control the distribution of modern drainage systems, suggesting that they may have been active recently. As the younger strike\|slip faults are subparallel to the older folds and thrusts, we have not been able to determine the magnitude of left\|slip on these faults. We interpret the termination of contractional deformation and the subsequent replacement by strike\|slip faulting as a result of both clockwise rotation of the region and westward propagation of strike\|slip deformation in eastern Tibet.展开更多
Dextral-slip in the Nyainqentanglha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The ...Dextral-slip in the Nyainqentanglha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentanglha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentanglha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhtinzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, DamxungYangbajain and Angan graben systems that pass east of the Nyainqentanglha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime.展开更多
The structural analysis based on the explanation of seismic profiles indicates that a lot of thrust faults and strike-slip faults of Late Cenozoic occur in western Hexi Corridor and its nearby regions. They can be di...The structural analysis based on the explanation of seismic profiles indicates that a lot of thrust faults and strike-slip faults of Late Cenozoic occur in western Hexi Corridor and its nearby regions. They can be divided into two types. One is thrust faults dipping southwards and extending NWwards, which was mainly correlated with the thrusting of northern Qilianshan and located at the NE margin of Qilianshan and the southwestern Hexi Corridor, the other is thrust faults and strike-slip faults that were related to the strike-slipping of Altun fault and located mainly at the regions of Hongliuxia, Kuantaishan, and Helishan that are close to the Altun fault. All these faults, which were related to the remote effects of collision between the two continents of India and Tibet during the Late Eocene and later, started to develop since the Late Tertiary and presented the features of violent thrust or strike-slip movement in Quaternary. Many of them are still active up to now and thus belong to the active faults that are the potential inducement of earthquakes in the Hexi Corridor. Moreover, a lot of intense structural deformation and many morphology phenomena such as tectonic terrace and river offset were formed under the control of these faults in Quaternary.展开更多
Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the ...Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by “flower” strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269±5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.展开更多
The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well...The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well developed fault system in the western segment of the East Kunlun Mountains and thrust propagation, normal slip and decoupling are the chief deformation events in this area. (2) Although the thrusting started in the Late Carboniferous and Late Triassic-Early Jurassic, strong activity took place in the Miocene-Quaternary when the Kumkol basin was strongly downwarped. (3) The tectonic pattern of coexistence of N-directed thrust propagation and S-directed normal slip in this area is consistent with the general tectonic pattern of the northern Qinghai-Tibet plateau and also very similar to that of the Himalayan region on the southern margin of the Qinghai-Tibet plateau, but their directions between the thrust propagation are opposite and all the strong thrust propagations occurred from the Miocene-Pliocene to Quaternary, a period featuring strong collision between the Indian plate and the Eurasian plate and abrupt uplift of the Qinghai-Tibet plateau. This oppositely directed thrust propagation and normal slip reveal such kinematic characteristics as symmetric propagations of deep-seated materials towards the north and south beneath the Qinghai-Tibet plateau and gravitational sliding of superficial materials towards the interior of the plateau. Therefore, the establishment of the fault system in the study area may provide an approach to the study of deep processes of the northern Qinghai-Tibet plateau and the construction of a unified geodynamic model for the uplift of the Qinghai-Tibet plateau.展开更多
文摘In order to establish deformation history for the Cenozoic development of the Tibetan Plateau, we conducted geologic mapping along a 120km traverse between Nangqian and Yushu in the northeastern Qiangtang terrane. This work reveals a complex interaction among Tertiary thrusting, strike\|slip faulting, sedimentation, and igneous activity. Two phases of deformation are recognized. The older northeast—southwest shortening, expressed by thrusting and folding, is followed by left\|slip faulting along northwest\|trending faults. Tertiary thrusts, predominantly southwest\|dipping, are distributed throughout the traverse, and typically juxtapose Mesozoic strata over Paleogene strata. The latter were deposited in several separated basins during folding and thrusting, as indicated by well\|developed growth strata. A preliminary construction of balanced cross\|sections suggests a minimum estimate of 45km of crustal shortening along the traverse. Numerous hypabyssal intrusions were mapped in the southern part of the traverse near Nangqian. They were emplaced into the Paleogene sediments and are dated between 36 and 33Ma by 40 Ar/ 39 Ar and U\|Pb methods. Paleogene sediments are also interbedded with volcanics in both the southern and northern parts of the study area. In the northernmost part of the traverse, a volcanic unit overlies a Tertiary thrust. This unit itself is broadly folded. This relationship suggests that Tertiary igneous activity was coeval with contractional deformation in the region, implying strongly the causal relationship between the two processes. The youngest event in the area is the development of northwest\|trending left\|slip faults. They cut Tertiary thrusts, folds, and about 35Ma igneous intrusions. In contrast to widely distributed Tertiary folds and thrusts, strike\|slip faulting is restricted only to the southern portion of our mapped area near Nangqian. The strike\|slip faults apparently control the distribution of modern drainage systems, suggesting that they may have been active recently. As the younger strike\|slip faults are subparallel to the older folds and thrusts, we have not been able to determine the magnitude of left\|slip on these faults. We interpret the termination of contractional deformation and the subsequent replacement by strike\|slip faulting as a result of both clockwise rotation of the region and westward propagation of strike\|slip deformation in eastern Tibet.
文摘Dextral-slip in the Nyainqentanglha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentanglha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentanglha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhtinzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, DamxungYangbajain and Angan graben systems that pass east of the Nyainqentanglha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime.
文摘The structural analysis based on the explanation of seismic profiles indicates that a lot of thrust faults and strike-slip faults of Late Cenozoic occur in western Hexi Corridor and its nearby regions. They can be divided into two types. One is thrust faults dipping southwards and extending NWwards, which was mainly correlated with the thrusting of northern Qilianshan and located at the NE margin of Qilianshan and the southwestern Hexi Corridor, the other is thrust faults and strike-slip faults that were related to the strike-slipping of Altun fault and located mainly at the regions of Hongliuxia, Kuantaishan, and Helishan that are close to the Altun fault. All these faults, which were related to the remote effects of collision between the two continents of India and Tibet during the Late Eocene and later, started to develop since the Late Tertiary and presented the features of violent thrust or strike-slip movement in Quaternary. Many of them are still active up to now and thus belong to the active faults that are the potential inducement of earthquakes in the Hexi Corridor. Moreover, a lot of intense structural deformation and many morphology phenomena such as tectonic terrace and river offset were formed under the control of these faults in Quaternary.
文摘Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by “flower” strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269±5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.
文摘The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well developed fault system in the western segment of the East Kunlun Mountains and thrust propagation, normal slip and decoupling are the chief deformation events in this area. (2) Although the thrusting started in the Late Carboniferous and Late Triassic-Early Jurassic, strong activity took place in the Miocene-Quaternary when the Kumkol basin was strongly downwarped. (3) The tectonic pattern of coexistence of N-directed thrust propagation and S-directed normal slip in this area is consistent with the general tectonic pattern of the northern Qinghai-Tibet plateau and also very similar to that of the Himalayan region on the southern margin of the Qinghai-Tibet plateau, but their directions between the thrust propagation are opposite and all the strong thrust propagations occurred from the Miocene-Pliocene to Quaternary, a period featuring strong collision between the Indian plate and the Eurasian plate and abrupt uplift of the Qinghai-Tibet plateau. This oppositely directed thrust propagation and normal slip reveal such kinematic characteristics as symmetric propagations of deep-seated materials towards the north and south beneath the Qinghai-Tibet plateau and gravitational sliding of superficial materials towards the interior of the plateau. Therefore, the establishment of the fault system in the study area may provide an approach to the study of deep processes of the northern Qinghai-Tibet plateau and the construction of a unified geodynamic model for the uplift of the Qinghai-Tibet plateau.