Objective:To compare the efficacy and safety of thulium fiber laser(TFL)and holmium:yttrium-aluminum-garnet(Ho:YAG)laser for ureteric stone management with semi-rigid ureteroscopy.Methods:In a prospective study from J...Objective:To compare the efficacy and safety of thulium fiber laser(TFL)and holmium:yttrium-aluminum-garnet(Ho:YAG)laser for ureteric stone management with semi-rigid ureteroscopy.Methods:In a prospective study from January 2020 to December 2021,we compared 40 patients in each group who underwent semi-rigid ureteroscopic lithotripsy with TFL and that with Ho:YAG laser.Stone volume,stone density,stone fragmentation rates,total lasing time,total operative time,endoscopic vision,retropulsion and stone free rates were analyzed in both groups and compared.Results:Mean stone volume was comparable in the TFL group and the Ho:YAG laser group(282.45[standard deviation,SD 139.79]mm3 vs.279.49[SD 312.52]mm3;p=0.964).Mean stone density was also comparable in the TFL group and the Ho:YAG laser group(1135.30[SD 317.04]Hounsfield unit vs.1131.75[SD 283.03]Hounsfield unit;p=0.959).The mean stone fragmentation rates calculated as stone volume divided by lasing time were 25.85(SD 10.61)mm3/min and 21.37(SD 14.13)mm3/min in the TFL group and the Ho:YAG laser group,respectively(p=0.113).The mean total lasing time(10.15[SD]4.69 min vs.11.43[SD 4.56]min;p=0.222),mean operative time(25.13[SD 9.51]min vs.25.54[SD 10.32]min;p=0.866),and mean total hospital stay(2.62[SD 0.77]days vs.2.61[SD 0.84]days;p=0.893)were comparable in the TFL group and in the Ho:YAG group.The vision was better and retropulsion was less in the TFL group.The stone-free rate at 1 month postoperatively was slightly better in the TFL group(100%vs.90%;p=0.095).展开更多
Objective:The holmium:yttrium-aluminium-garnet laser(Ho:YAG)has been the gold standard for laser lithotripsy over the last three decades.After demonstrating good in vitro efficacy,the thulium fiber laser(TFL)has been ...Objective:The holmium:yttrium-aluminium-garnet laser(Ho:YAG)has been the gold standard for laser lithotripsy over the last three decades.After demonstrating good in vitro efficacy,the thulium fiber laser(TFL)has been recently released in the market and the initial clinical results are encouraging.This article aims to review the main technology differences between the Ho:YAG laser and the TFL,discuss the initial clinical results with the TFL as well as the optimal settings for TFL lithotripsy.Methods:We reviewed the literature focusing on the technological aspects of the Ho:YAG laser and TFL as well as the results of in vitro and in vivo studies comparing both technologies.Results:In vitro studies show a technical superiority of TFL compared to the Ho:YAG laser and encouraging results have been demonstrated in clinical practice.However,as TFL is a new technology,limited studies are currently available,and the optimal settings for lithotripsy are not yet established.Conclusion:TFL has the potential to be an alternative to the Ho:YAG laser,but more reports are still needed to determine the optimal laser for lithotripsy of urinary tract stones when considering all parameters including effectiveness,safety,and costs.展开更多
Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This lit...Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This literature review aims to examine the current state of knowledge on fURS treatment of kidney stones, with a particular focus on the impact of the latest laser technologies on clinical outcomes and patient safety.Methods: We conducted a search of the PubMed/PMC, Web of Science Core Collection, Scopus, Embase (Ovid), and Cochrane Databases for all randomized controlled trial articles on laser lithotripsy in September 2023 without time restriction.Results: We found a total of 22 relevant pieces of literature. Holmium laser has been used for intracavitary laser lithotripsy for nearly 30 years and has become the golden standard for the treatment of urinary stones. However, the existing holmium laser cannot completely powder the stone, and the retropulsion of the stone after the laser emission and the thermal damage to the tissue have caused many problems for clinicians. The introduction of thulium fiber laser and Moses technology brings highly efficient dusting lithotripsy effect through laser innovation, limiting pulse energy and broadening pulse frequency.Conclusion: While the holmium:yttrium-aluminum-garnet laser remains the primary choice for endoscopic laser lithotripsy, recent technological advancements hint at a potential new gold standard. Parameter range, retropulsion effect, laser fiber adaptability, and overall system performance demand comprehensive attention. The ablation efficacy of high-pulse-frequency devices relies on precise targeting, which may pose practical challenges.展开更多
Two-micron (thulium) laser resection of the prostate-tangerine technique (TmLRP-TT) is a transurethral procedure that uses a thulium laser fiber to dissect whole prostatic lobes off the surgical capsule, similar t...Two-micron (thulium) laser resection of the prostate-tangerine technique (TmLRP-TT) is a transurethral procedure that uses a thulium laser fiber to dissect whole prostatic lobes off the surgical capsule, similar to peeling a tangerine. We recently reported the primary results. Here we introduce this procedure in detail. A 70-W, 2-um (thulium) laser was used in continuous-wave mode. We joined the incision by making a transverse cut from the level of the verumontanum to the bladder neck, making the resection sufficiently deep to reach the surgical capsule, and resected the prostate into small pieces, just like peeling a tangerine. As we resected the prostate, the pieces were vaporized, sufficiently small to be evacuated through the reseetoscope sheath, and the use of the mechanical tissue morcellator was not required. The excellent hemostasis of the thulium laser ensured the safety of TmLRP-TT. No patient required blood transfusion. Saline irrigation was used intraoperatively, and no case of transurethral resection syndrome was observed. The bladder outlet obstruction had clearly resolved after catheter removal in all cases. We designed the tangerine technique and proved it to be the most suitable procedure for the use of thulium laser in the treatment of benign prostatic hyperplasia (BPH). This procedure, which takes less operative time than standard techniques, is safe and combines efficient cutting and rapid organic vaporization, thereby showing the great superiority of the thulium fiber laser in the treatment of BPH. It has been proven to be as safe and efficient as transurethral resection of the prostate (TURP) during the 1-year follow-up.展开更多
Recent innovations in thulium laser techniques have allowed application in the treatment of bladder cancer.Laser en bloc resection of bladder cancer is a transurethral procedure that may offer an alternative to the co...Recent innovations in thulium laser techniques have allowed application in the treatment of bladder cancer.Laser en bloc resection of bladder cancer is a transurethral procedure that may offer an alternative to the conventional transurethral resection procedure.We conducted a review of basic thulium laser physics and laser en bloc resection procedures and summarized the current clinical literature with a focus on complications and outcomes.Literature evidence suggests that thulium laser techniques including smooth incision,tissue vaporization,and en bloc resection represent feasible,safe,and effective procedures in the treatment of bladder cancer.Moreover,these techniques allow improved specimen orientation and accurate determination of invasion depth,facilitating correct diagnosis,restaging,and reevaluation of the need for a second resection.Nonetheless,large-scale multicentre studies with longer follow-up are warranted for a robust assessment.The present review is meant as a quick reference for urologists.展开更多
Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microf...Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of - 1.2 cm with a waist diameter of -10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi- soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μ.m region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.展开更多
In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction effi...In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction efficiency, and pulse extraction efficiency are derived through analyzing the interaction process between the pump pulse and the laser pulse. They are useful for understanding, designing, and optimizing the in-band pumped TDF lasers in a 1.9 μm-2.1 μm wavelength region. The experiment with an all-fiber gain-switched TDF laser pumped by a 1.558-μm pulse amplifier is conducted, and our experimental results show good agreement with theoretical analysis.展开更多
A systematic investigation on fluorescence spectroscopy of trivalent thulium doped in oxyfluoride glass ceramics containing LaF3 nanocrystals has been carried out in a spectral range from 400 to 900 nm under the direc...A systematic investigation on fluorescence spectroscopy of trivalent thulium doped in oxyfluoride glass ceramics containing LaF3 nanocrystals has been carried out in a spectral range from 400 to 900 nm under the direct excitation of 1D2 level at a low temperature. Specific optical transitions related to the fluorescence emissions are studied based on experimental measurements in frequency and time domain. Fluorescence emissions from the ions in crystal phase are distinguished from what in glass phase and their spectroscopic properties are explored. The dynamical process shows that the temporal decay of fluorescence emission consists of two parts: a rapid decay from the ions in glass phase and a slower decay from the ions in crystal phase.展开更多
The influences of an external magnetic field on the optical properties of the TEB30A nematic liquid crystal doped with thulium oxides (Gd203, Dy203, Nd203, Y203, and Sm203) are studied. It is shown that a magnetic f...The influences of an external magnetic field on the optical properties of the TEB30A nematic liquid crystal doped with thulium oxides (Gd203, Dy203, Nd203, Y203, and Sm203) are studied. It is shown that a magnetic field applied parallelly to the sample cell surface leads to the rotational orientation of mesogenes. All samples except for the sample doped with Sm203 nanoparticles undergo structural deformations. The behavior of the TEB30A/Sm203 differs from those of the TEB30A liquid crystal doped with other four nanoparticles. The presence of Sm203 nanoparticles in the TEB30A liquid crystal does not cause the structural deformation of the liquid crystal matrix. At the same time, the anchoring type of the liquid crystal molecules on the nanoparticle surface is different. The director n is parallel to the magnetic moment/~ in the TEB30A/Sm203, and inclined to the magnetic moment/~ in the TEB30A/Nd203, and perpendicular to the magnetic moment/~ in each of TEB30A/Gd203, TEB30A/Dy203, and TEB30A/Y203. Besides, the dependence of the structural deformation on the critical magnetic field for the TEB30A is obtained.展开更多
Hydrolytic equilibria of Tm (III) in KOH solutions were studied at 25°C. A spectrophotometry with m-cresol purple and 2-naphthol as pH indicators was used at an ionic strength of not more than 0.0005. The results...Hydrolytic equilibria of Tm (III) in KOH solutions were studied at 25°C. A spectrophotometry with m-cresol purple and 2-naphthol as pH indicators was used at an ionic strength of not more than 0.0005. The results indicate that in freshly prepared solutions at pH ranging between 6 and 10 Tm is present as , , and . The stepwise stability constants of hydroxide complexes calculated at zero ionic strength were obtained as coefficient of linear regression equations from the graph of optical densities of the indicators in Tm solutions at varying pH.展开更多
文摘Objective:To compare the efficacy and safety of thulium fiber laser(TFL)and holmium:yttrium-aluminum-garnet(Ho:YAG)laser for ureteric stone management with semi-rigid ureteroscopy.Methods:In a prospective study from January 2020 to December 2021,we compared 40 patients in each group who underwent semi-rigid ureteroscopic lithotripsy with TFL and that with Ho:YAG laser.Stone volume,stone density,stone fragmentation rates,total lasing time,total operative time,endoscopic vision,retropulsion and stone free rates were analyzed in both groups and compared.Results:Mean stone volume was comparable in the TFL group and the Ho:YAG laser group(282.45[standard deviation,SD 139.79]mm3 vs.279.49[SD 312.52]mm3;p=0.964).Mean stone density was also comparable in the TFL group and the Ho:YAG laser group(1135.30[SD 317.04]Hounsfield unit vs.1131.75[SD 283.03]Hounsfield unit;p=0.959).The mean stone fragmentation rates calculated as stone volume divided by lasing time were 25.85(SD 10.61)mm3/min and 21.37(SD 14.13)mm3/min in the TFL group and the Ho:YAG laser group,respectively(p=0.113).The mean total lasing time(10.15[SD]4.69 min vs.11.43[SD 4.56]min;p=0.222),mean operative time(25.13[SD 9.51]min vs.25.54[SD 10.32]min;p=0.866),and mean total hospital stay(2.62[SD 0.77]days vs.2.61[SD 0.84]days;p=0.893)were comparable in the TFL group and in the Ho:YAG group.The vision was better and retropulsion was less in the TFL group.The stone-free rate at 1 month postoperatively was slightly better in the TFL group(100%vs.90%;p=0.095).
文摘Objective:The holmium:yttrium-aluminium-garnet laser(Ho:YAG)has been the gold standard for laser lithotripsy over the last three decades.After demonstrating good in vitro efficacy,the thulium fiber laser(TFL)has been recently released in the market and the initial clinical results are encouraging.This article aims to review the main technology differences between the Ho:YAG laser and the TFL,discuss the initial clinical results with the TFL as well as the optimal settings for TFL lithotripsy.Methods:We reviewed the literature focusing on the technological aspects of the Ho:YAG laser and TFL as well as the results of in vitro and in vivo studies comparing both technologies.Results:In vitro studies show a technical superiority of TFL compared to the Ho:YAG laser and encouraging results have been demonstrated in clinical practice.However,as TFL is a new technology,limited studies are currently available,and the optimal settings for lithotripsy are not yet established.Conclusion:TFL has the potential to be an alternative to the Ho:YAG laser,but more reports are still needed to determine the optimal laser for lithotripsy of urinary tract stones when considering all parameters including effectiveness,safety,and costs.
基金supported by the 1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(Grant No.ZYGD18011 and No.ZYJC18015 to Wang K).
文摘Objective: Flexible ureteroscopy (fURS) has become a widely accepted and effective technique for treating kidney stones. With the development of new laser systems, the fURS approach has evolved significantly. This literature review aims to examine the current state of knowledge on fURS treatment of kidney stones, with a particular focus on the impact of the latest laser technologies on clinical outcomes and patient safety.Methods: We conducted a search of the PubMed/PMC, Web of Science Core Collection, Scopus, Embase (Ovid), and Cochrane Databases for all randomized controlled trial articles on laser lithotripsy in September 2023 without time restriction.Results: We found a total of 22 relevant pieces of literature. Holmium laser has been used for intracavitary laser lithotripsy for nearly 30 years and has become the golden standard for the treatment of urinary stones. However, the existing holmium laser cannot completely powder the stone, and the retropulsion of the stone after the laser emission and the thermal damage to the tissue have caused many problems for clinicians. The introduction of thulium fiber laser and Moses technology brings highly efficient dusting lithotripsy effect through laser innovation, limiting pulse energy and broadening pulse frequency.Conclusion: While the holmium:yttrium-aluminum-garnet laser remains the primary choice for endoscopic laser lithotripsy, recent technological advancements hint at a potential new gold standard. Parameter range, retropulsion effect, laser fiber adaptability, and overall system performance demand comprehensive attention. The ablation efficacy of high-pulse-frequency devices relies on precise targeting, which may pose practical challenges.
文摘Two-micron (thulium) laser resection of the prostate-tangerine technique (TmLRP-TT) is a transurethral procedure that uses a thulium laser fiber to dissect whole prostatic lobes off the surgical capsule, similar to peeling a tangerine. We recently reported the primary results. Here we introduce this procedure in detail. A 70-W, 2-um (thulium) laser was used in continuous-wave mode. We joined the incision by making a transverse cut from the level of the verumontanum to the bladder neck, making the resection sufficiently deep to reach the surgical capsule, and resected the prostate into small pieces, just like peeling a tangerine. As we resected the prostate, the pieces were vaporized, sufficiently small to be evacuated through the reseetoscope sheath, and the use of the mechanical tissue morcellator was not required. The excellent hemostasis of the thulium laser ensured the safety of TmLRP-TT. No patient required blood transfusion. Saline irrigation was used intraoperatively, and no case of transurethral resection syndrome was observed. The bladder outlet obstruction had clearly resolved after catheter removal in all cases. We designed the tangerine technique and proved it to be the most suitable procedure for the use of thulium laser in the treatment of benign prostatic hyperplasia (BPH). This procedure, which takes less operative time than standard techniques, is safe and combines efficient cutting and rapid organic vaporization, thereby showing the great superiority of the thulium fiber laser in the treatment of BPH. It has been proven to be as safe and efficient as transurethral resection of the prostate (TURP) during the 1-year follow-up.
文摘Recent innovations in thulium laser techniques have allowed application in the treatment of bladder cancer.Laser en bloc resection of bladder cancer is a transurethral procedure that may offer an alternative to the conventional transurethral resection procedure.We conducted a review of basic thulium laser physics and laser en bloc resection procedures and summarized the current clinical literature with a focus on complications and outcomes.Literature evidence suggests that thulium laser techniques including smooth incision,tissue vaporization,and en bloc resection represent feasible,safe,and effective procedures in the treatment of bladder cancer.Moreover,these techniques allow improved specimen orientation and accurate determination of invasion depth,facilitating correct diagnosis,restaging,and reevaluation of the need for a second resection.Nonetheless,large-scale multicentre studies with longer follow-up are warranted for a robust assessment.The present review is meant as a quick reference for urologists.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304409 and 61705028)the Natural Science Foundation of Chongqing City,China(Grant Nos.csct2013jcyjA4004 and cstc2017jcyjA0893)+1 种基金the Scientific and Technological Research Program of Chongqing Municipal Education Commission,China(Grant No.KJ1500422)the Postgraduate Research Innovation Foundation of Chongqing City,China(Grant No.CYS17240)
文摘Using graphene-covered-microfiber (GCM) as a saturable absorber, the generation and evolution of multiple operation states are proposed and demonstrated in passively mode-locked thulium-doped fiber laser. The microfiber was fabricated using the flame brushing method to an interaction length of - 1.2 cm with a waist diameter of -10 μm. Graphene layers were grown on copper foils by chemical vapor deposition and transferred onto the polydimethylsiloxane (PDMS) to form a PDMS/graphene film, which allowed light-graphene interaction via evanescent field. With the increase of the pump power from 1.25 W to 2.15 W, five different lasing regimes, including continuous-wave, conventional soliton mode-locking, multi- soliton mode-locking, a period of transition, and noise-like mode-locking, were achieved in a fiber ring cavity. To the best of our knowledge, it is the first report of the generation and evolution of multiple operation states by covering graphene on the microfiber in the 2-μ.m region. The results demonstrate that GCM can be a promising method for fabricating all fiber SA, and the switchable operation states can provide more portability in complex application domain.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60878011 and 61078008)the Program for New Century ExcellentTalents in University,China (Grant No. NCET-10-0067)
文摘In this paper, the theoretical rate equation model of an in-band pumped gain-switched thulium-doped fiber (TDF) laser is investigated. The analytical formulations of pump energy threshold, peak power extraction efficiency, and pulse extraction efficiency are derived through analyzing the interaction process between the pump pulse and the laser pulse. They are useful for understanding, designing, and optimizing the in-band pumped TDF lasers in a 1.9 μm-2.1 μm wavelength region. The experiment with an all-fiber gain-switched TDF laser pumped by a 1.558-μm pulse amplifier is conducted, and our experimental results show good agreement with theoretical analysis.
基金Project supported by the Foundation for Key Program of Ministry of Education, China (Grant No 108118)
文摘A systematic investigation on fluorescence spectroscopy of trivalent thulium doped in oxyfluoride glass ceramics containing LaF3 nanocrystals has been carried out in a spectral range from 400 to 900 nm under the direct excitation of 1D2 level at a low temperature. Specific optical transitions related to the fluorescence emissions are studied based on experimental measurements in frequency and time domain. Fluorescence emissions from the ions in crystal phase are distinguished from what in glass phase and their spectroscopic properties are explored. The dynamical process shows that the temporal decay of fluorescence emission consists of two parts: a rapid decay from the ions in glass phase and a slower decay from the ions in crystal phase.
基金Project supported by the National Natural Science Foundation of China(Grant No.50862007)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.20080404MS0114)the Inner Mongolia Autonomous Region Scientific Research Fund,China(Grant No.NJZY12203)
文摘The influences of an external magnetic field on the optical properties of the TEB30A nematic liquid crystal doped with thulium oxides (Gd203, Dy203, Nd203, Y203, and Sm203) are studied. It is shown that a magnetic field applied parallelly to the sample cell surface leads to the rotational orientation of mesogenes. All samples except for the sample doped with Sm203 nanoparticles undergo structural deformations. The behavior of the TEB30A/Sm203 differs from those of the TEB30A liquid crystal doped with other four nanoparticles. The presence of Sm203 nanoparticles in the TEB30A liquid crystal does not cause the structural deformation of the liquid crystal matrix. At the same time, the anchoring type of the liquid crystal molecules on the nanoparticle surface is different. The director n is parallel to the magnetic moment/~ in the TEB30A/Sm203, and inclined to the magnetic moment/~ in the TEB30A/Nd203, and perpendicular to the magnetic moment/~ in each of TEB30A/Gd203, TEB30A/Dy203, and TEB30A/Y203. Besides, the dependence of the structural deformation on the critical magnetic field for the TEB30A is obtained.
文摘Hydrolytic equilibria of Tm (III) in KOH solutions were studied at 25°C. A spectrophotometry with m-cresol purple and 2-naphthol as pH indicators was used at an ionic strength of not more than 0.0005. The results indicate that in freshly prepared solutions at pH ranging between 6 and 10 Tm is present as , , and . The stepwise stability constants of hydroxide complexes calculated at zero ionic strength were obtained as coefficient of linear regression equations from the graph of optical densities of the indicators in Tm solutions at varying pH.