AIM: To transduce recombinant human platelet-derived growth factor B (PDGF-B) gene adeno-associated virus(AAV) to in vitro cultured cat corneal endothelial cell (CEC) and observe the effect of the expressed PDGF-BB pr...AIM: To transduce recombinant human platelet-derived growth factor B (PDGF-B) gene adeno-associated virus(AAV) to in vitro cultured cat corneal endothelial cell (CEC) and observe the effect of the expressed PDGF-BB protein on the viability of cat CEC. METHODS: Cat cornea endothelium was torn under microscope and rapidly cultivated in DMEM to form single layer CEC and the passage 2 endothelial cells were used in this study. The recombinant human PDGF-B gene AAV was constructed and transduced into cat CEC directly. Three groups were as following: blank control group, AAV control group and recombinant AAV group. At 24 hours, 48 hours, and 5 days after transduction, total RNA was extracted from the CEC by Trizol and the expression of PDGF-B gene was detected by fluorescence quantitative polymerase chain reaction. Viability of the transduced CEC was detected at 48 hours after transduction by MTT assay. Cell morphology was observed under inverted phase contrast microscope. RESULTS: With the torn endothelium culture technique, we rapidly got single layer cat CEC. At 24 hours, 48 hours and 5 days after transduction, fluorescence quantitative polymerase chain reaction showed there was no significant difference of the expressed PDGF-B gene mRNA between blank control group and AAV control group (P>0.05). In contrast, there were significant differences between two control groups and recombinant AAV group (P<0.05). MTT assay showed that in recombinant AAV group, the expressed PDGF-BB protein could promote the viability of cat CEC. Morphology observation showed at 48 hours after transduction, cells in CEC-AAV-PDGF-B group proliferated into bigger scales in regular triangle to hexagon shape with distinct boundary, while the number of cells was significantly less in the two control groups. CONCLUSION: The recombinant AAV-PDGF-B expresses biological active PDGF-BB protein in cat CEC, which promotes the viability and proliferation of cells.展开更多
BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. Howe...BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. However, the molecular mechanisms by which VEGF induces BMSC differentiation and migration remain poorly understood. OBJECTIVE; To investigate the role of platelet-derived growth factor (PDGF) receptor (PDGFR) in BMSC differentiation and migration induced by VEGE DESIGN, TIME AND SETTING: A parallel, controlled, in vitro experiment was performed at the Molecular Neurobiology & Neural Regeneration and Repairing Laboratory, Anhui Provincial Hospital of Anhui Medical University, China from June 2008 to March 2009. MATERIALS: U87 glioma cells were purchased from Shanghai Institutes for Biological Sciences; mouse anti-human PDGFR and VEGF receptor (VEGFR) monoclonal antibodies were purchased from Peprotech, USA. METHODS: Isolated BMSCs were precultured with neutralizing antibody for VEGFR-1, VEGFR-2, PDGFR-α, and PDGFR-β to block biological activity of related receptors, followed by induced differentiation with 50μg/L VEGF. BMSCs induced with 50μg/L VEGF alone served as the VEGF-induced group. The control group remained untreated. MAIN OUTCOME MEASURES: Cell surface markers were identified by flow cytometry; BMSC surface cytokine receptor expression was detected by reverse transcription-polymerase chain reaction; the Transwell model was used to observe cell migration. RESULTS: After blocking the PDGFR, VEGF did not induce BMSC cell surface marker CD-31 or von Willebrand factor (vWF) expression. However, inhibition with VEGF receptor blocking agents, VEGF induced BMSCs to express CD-31 and vWE Following inhibition of the PDGFR, the number of cells migrating through the polycarbonate membrane Transwell chamber was decreased, as well as the number of BMSCs migrating to glioma cells. However, through the use of VEGF receptor blocking agents, the number of migrating cells remained unchanged. VEGF preculture increased the number of BMSCs migrating to gliomas. CONCLUSION: VEGF interacts with PDGFRs on the BMSC surface to attract BMSC directional migration and induce BMSC differentiation. The VEGF/PDGFR pathway participates in BMSC directional migration to glioma. VEGF pretreatment increased efficiency of BMSC migration to glioma.展开更多
AIM: To demonstrate that human platelet-derived growth factor-B (PDGF-B) cDNA could be Expressed in primary cultured cat corneal endothelia cells by using gene transfer techniques; to explore a useful tool for the fur...AIM: To demonstrate that human platelet-derived growth factor-B (PDGF-B) cDNA could be Expressed in primary cultured cat corneal endothelia cells by using gene transfer techniques; to explore a useful tool for the further studies of the molecular mechanisms of corneal endothelium failure and provide a potential effective genetic therapy for the blind patients. ' METHODS: Human PDGF-B cDNA was isolated from human placent by RT-PCR and inserted into pcDNA(4) vector to construct recombinant eukaryotic expression plasmid pcDNA(4)-PDGF-B. The full length was confirmed by the DNA sequencing analysis. By tearing endothelium technique we obtained pure single layer of cat corneal endothelial cells. The pcDNA(4)-PDGF-B eukaryotic Expression vector was transferred into cat corneal endothelial cells by Effectene (TM) lipofectine. The transfection efficiency of Effectene (TM) lipofectine in pcDNA(4)-B was detected with pcDNA(4)-GFP. 5 days later, RT-PCR was used to check the PDGF-B expression. Cell viability was tested by modified tertrozalium salt (MU) method. Cell morphology was observed under inverted phase contrast microscope. RESULTS: The human PDGF-B cDNA was isolated successfully from healthy parturien placent tissue and the sequence was confirmed by computer automatic sequence and PCR analysis. Pure single layer cat corneal endothelial cells were successfully cultured by tearing endothelium technique. Effectene (TM) lipofectine transfection technique could be effectively used to transfer pcDNA(4)-PDGF-B into cat corneal endothelial cells in vitro, the transfection efficiency was 30%. RT-PCR result showed that human PDGF-B gene was highly expressed in transfected cat corneal endothelial cells. The expressed PDGF-BB protein promoted the viability of cat corneal endothelial cells. CONCLUSION: Human platelet-derived growth factor-B (PDGF-B) cDNA could be highly Expressed in cultured cat corneal endothelial cells by gene transfection techniques. Expressed PDGF-BB protein significantly promoted the viability of cat corneal endothelial cells, thus provided a potential effective method for corneal endothelium blindness genetic therapy.展开更多
基金Natural Science Foundation of Shandong Province,China (No.ZR2010HQ041)
文摘AIM: To transduce recombinant human platelet-derived growth factor B (PDGF-B) gene adeno-associated virus(AAV) to in vitro cultured cat corneal endothelial cell (CEC) and observe the effect of the expressed PDGF-BB protein on the viability of cat CEC. METHODS: Cat cornea endothelium was torn under microscope and rapidly cultivated in DMEM to form single layer CEC and the passage 2 endothelial cells were used in this study. The recombinant human PDGF-B gene AAV was constructed and transduced into cat CEC directly. Three groups were as following: blank control group, AAV control group and recombinant AAV group. At 24 hours, 48 hours, and 5 days after transduction, total RNA was extracted from the CEC by Trizol and the expression of PDGF-B gene was detected by fluorescence quantitative polymerase chain reaction. Viability of the transduced CEC was detected at 48 hours after transduction by MTT assay. Cell morphology was observed under inverted phase contrast microscope. RESULTS: With the torn endothelium culture technique, we rapidly got single layer cat CEC. At 24 hours, 48 hours and 5 days after transduction, fluorescence quantitative polymerase chain reaction showed there was no significant difference of the expressed PDGF-B gene mRNA between blank control group and AAV control group (P>0.05). In contrast, there were significant differences between two control groups and recombinant AAV group (P<0.05). MTT assay showed that in recombinant AAV group, the expressed PDGF-BB protein could promote the viability of cat CEC. Morphology observation showed at 48 hours after transduction, cells in CEC-AAV-PDGF-B group proliferated into bigger scales in regular triangle to hexagon shape with distinct boundary, while the number of cells was significantly less in the two control groups. CONCLUSION: The recombinant AAV-PDGF-B expresses biological active PDGF-BB protein in cat CEC, which promotes the viability and proliferation of cells.
基金the National Natural Science Foundation of China,No.30672166
文摘BACKGROUND: Vascular endothelial growth factor (VEGF) induces bone marrow-derived mesenchymal stem cell (BMSC) differentiation into vascular endothelial-like cells and promotes BMSC migration toward gliomas. However, the molecular mechanisms by which VEGF induces BMSC differentiation and migration remain poorly understood. OBJECTIVE; To investigate the role of platelet-derived growth factor (PDGF) receptor (PDGFR) in BMSC differentiation and migration induced by VEGE DESIGN, TIME AND SETTING: A parallel, controlled, in vitro experiment was performed at the Molecular Neurobiology & Neural Regeneration and Repairing Laboratory, Anhui Provincial Hospital of Anhui Medical University, China from June 2008 to March 2009. MATERIALS: U87 glioma cells were purchased from Shanghai Institutes for Biological Sciences; mouse anti-human PDGFR and VEGF receptor (VEGFR) monoclonal antibodies were purchased from Peprotech, USA. METHODS: Isolated BMSCs were precultured with neutralizing antibody for VEGFR-1, VEGFR-2, PDGFR-α, and PDGFR-β to block biological activity of related receptors, followed by induced differentiation with 50μg/L VEGF. BMSCs induced with 50μg/L VEGF alone served as the VEGF-induced group. The control group remained untreated. MAIN OUTCOME MEASURES: Cell surface markers were identified by flow cytometry; BMSC surface cytokine receptor expression was detected by reverse transcription-polymerase chain reaction; the Transwell model was used to observe cell migration. RESULTS: After blocking the PDGFR, VEGF did not induce BMSC cell surface marker CD-31 or von Willebrand factor (vWF) expression. However, inhibition with VEGF receptor blocking agents, VEGF induced BMSCs to express CD-31 and vWE Following inhibition of the PDGFR, the number of cells migrating through the polycarbonate membrane Transwell chamber was decreased, as well as the number of BMSCs migrating to glioma cells. However, through the use of VEGF receptor blocking agents, the number of migrating cells remained unchanged. VEGF preculture increased the number of BMSCs migrating to gliomas. CONCLUSION: VEGF interacts with PDGFRs on the BMSC surface to attract BMSC directional migration and induce BMSC differentiation. The VEGF/PDGFR pathway participates in BMSC directional migration to glioma. VEGF pretreatment increased efficiency of BMSC migration to glioma.
基金National Natural Science Foundation of China(No.30572011)Natural Science Foundation of Shandong Province,China(No.ZR2010HQ041)
文摘AIM: To demonstrate that human platelet-derived growth factor-B (PDGF-B) cDNA could be Expressed in primary cultured cat corneal endothelia cells by using gene transfer techniques; to explore a useful tool for the further studies of the molecular mechanisms of corneal endothelium failure and provide a potential effective genetic therapy for the blind patients. ' METHODS: Human PDGF-B cDNA was isolated from human placent by RT-PCR and inserted into pcDNA(4) vector to construct recombinant eukaryotic expression plasmid pcDNA(4)-PDGF-B. The full length was confirmed by the DNA sequencing analysis. By tearing endothelium technique we obtained pure single layer of cat corneal endothelial cells. The pcDNA(4)-PDGF-B eukaryotic Expression vector was transferred into cat corneal endothelial cells by Effectene (TM) lipofectine. The transfection efficiency of Effectene (TM) lipofectine in pcDNA(4)-B was detected with pcDNA(4)-GFP. 5 days later, RT-PCR was used to check the PDGF-B expression. Cell viability was tested by modified tertrozalium salt (MU) method. Cell morphology was observed under inverted phase contrast microscope. RESULTS: The human PDGF-B cDNA was isolated successfully from healthy parturien placent tissue and the sequence was confirmed by computer automatic sequence and PCR analysis. Pure single layer cat corneal endothelial cells were successfully cultured by tearing endothelium technique. Effectene (TM) lipofectine transfection technique could be effectively used to transfer pcDNA(4)-PDGF-B into cat corneal endothelial cells in vitro, the transfection efficiency was 30%. RT-PCR result showed that human PDGF-B gene was highly expressed in transfected cat corneal endothelial cells. The expressed PDGF-BB protein promoted the viability of cat corneal endothelial cells. CONCLUSION: Human platelet-derived growth factor-B (PDGF-B) cDNA could be highly Expressed in cultured cat corneal endothelial cells by gene transfection techniques. Expressed PDGF-BB protein significantly promoted the viability of cat corneal endothelial cells, thus provided a potential effective method for corneal endothelium blindness genetic therapy.