The purpose of this paper is to show a laboratory scale implementation of a Thyristor Switched Capacitors (TSC) as an alternative for voltage regulation during a direct on line three-phase induction motor starting o...The purpose of this paper is to show a laboratory scale implementation of a Thyristor Switched Capacitors (TSC) as an alternative for voltage regulation during a direct on line three-phase induction motor starting on an emulated weak transmission line. Thyristor switched capacitor bank was chosen because it is a well known topology, considering the very nature of the direct starting induction motors, which represents a highly inductive load, the use of switched reactors becomes unnecessary. Such fact minimizes the introduction of harmonics components, and also reduces the cost of the implementation. The binary disposition of the banks allows a variable Var compensation with sixteen steps, in this case. The solution makes use of low cost devices combined with sliding window voltage and current measurement algorithm and a PI control with dead band control for achieve the shown experimental results, where the system is able to manage a typically 20% voltage drop, reducing it to less than 4%. The schematic of the developed circuit, the control technique and a quite simple method to calculate the binary weight capacitors banks are also presented.展开更多
The modular multilevel converter(MMC)is a promising topology for medium-voltage drive applications due to its high-quality output waveforms,low device switching frequency and voltage rating.However,the large cell capa...The modular multilevel converter(MMC)is a promising topology for medium-voltage drive applications due to its high-quality output waveforms,low device switching frequency and voltage rating.However,the large cell capacitor voltage ripple is a severe challenge faced by MMC at low motor speeds.Recently,a hybrid MMC(HMMC)topology is proven to be a competitive solution because of its lower cell capacitor voltage ripple and not demonstrating a common-mode voltage(CMV)problem compared with other methods.However,the DC-link switch with IGBT limits HMMC from being applied in highvoltage applications.This paper uses a thyristor instead of IGBT as the DC-link switch.To ensure the thyristor can be softly turned on and safely turned off,a new control scheme is proposed.When using this proposed scheme,HMMC can also tolerate the failure of the thyristor being turned-off without shutting down the system,effectively improving its reliability.The cell capacitor voltage ripple analysis is presented considering the effects of the thyristor switching process.In addition,a decoupled energy balancing control is utilized to suppress the fluctuation of the DC current.Experimental results obtained from a 380 V/7.5 kW downscaled prototype validate the effectiveness of starting up a motor from the standby mode to rated speed applying full-torque.展开更多
文摘The purpose of this paper is to show a laboratory scale implementation of a Thyristor Switched Capacitors (TSC) as an alternative for voltage regulation during a direct on line three-phase induction motor starting on an emulated weak transmission line. Thyristor switched capacitor bank was chosen because it is a well known topology, considering the very nature of the direct starting induction motors, which represents a highly inductive load, the use of switched reactors becomes unnecessary. Such fact minimizes the introduction of harmonics components, and also reduces the cost of the implementation. The binary disposition of the banks allows a variable Var compensation with sixteen steps, in this case. The solution makes use of low cost devices combined with sliding window voltage and current measurement algorithm and a PI control with dead band control for achieve the shown experimental results, where the system is able to manage a typically 20% voltage drop, reducing it to less than 4%. The schematic of the developed circuit, the control technique and a quite simple method to calculate the binary weight capacitors banks are also presented.
基金This work was supported by the National Natural Science Foundation of China under Grant 51720105008 and 52177173。
文摘The modular multilevel converter(MMC)is a promising topology for medium-voltage drive applications due to its high-quality output waveforms,low device switching frequency and voltage rating.However,the large cell capacitor voltage ripple is a severe challenge faced by MMC at low motor speeds.Recently,a hybrid MMC(HMMC)topology is proven to be a competitive solution because of its lower cell capacitor voltage ripple and not demonstrating a common-mode voltage(CMV)problem compared with other methods.However,the DC-link switch with IGBT limits HMMC from being applied in highvoltage applications.This paper uses a thyristor instead of IGBT as the DC-link switch.To ensure the thyristor can be softly turned on and safely turned off,a new control scheme is proposed.When using this proposed scheme,HMMC can also tolerate the failure of the thyristor being turned-off without shutting down the system,effectively improving its reliability.The cell capacitor voltage ripple analysis is presented considering the effects of the thyristor switching process.In addition,a decoupled energy balancing control is utilized to suppress the fluctuation of the DC current.Experimental results obtained from a 380 V/7.5 kW downscaled prototype validate the effectiveness of starting up a motor from the standby mode to rated speed applying full-torque.