Understanding the undular tidal bores in the Qiantang River is essential for effective river management and maintenance.While breaking tidal bores have been studied extensively, reports on undular tidal bores in the Q...Understanding the undular tidal bores in the Qiantang River is essential for effective river management and maintenance.While breaking tidal bores have been studied extensively, reports on undular tidal bores in the Qiantang Riverremain limited. Furthermore, observed data on undular tidal bores fulfilling the requirements of short measurementtime intervals, and spring, medium, and neap tide coverage, and providing detailed data for the global vertical stratificationof flow velocity are quite limited. Based on field observations at Qige in the Qiantang estuary, we analyzedthe characteristics of undular tidal bores. The results showed that the flooding amplitude (a) of the first wave isalways larger than its ebbing amplitude (b). Moreover, the vertical distribution of the maximum flood velocity exhibitesthree shapes, influenced by the tidal range, while that of the maximum ebb velocity exhibites a single shape. Duringthe initial phase of the flood tide in the spring and medium tides, the upper water body experiences multiple oscillatingchanges along the flow direction, corresponding to the alternating process of the crest and trough of the tide levelupon the arrival of the tidal bore. The tidal range is a crucial parameter in tidal bore hydrodynamics. By establishingthe relationship between hydrodynamic parameters and tidal range, other hydrodynamic parameters, such as the tidalbore height, maximum flood depth–averaged velocity, maximum flood stratified velocity at the measurement points,and duration of the flood tide current, can be effectively predicted, thereby providing an important reference for rivermanagement and maintenance.展开更多
Tidal bores are a unique hydrodynamic phenomenon during flood tide in the Qiantang Estuary.The tidal bore propagation around the similar right-angle shoreline is rarely documented in tidal estuaries.To investigate tid...Tidal bores are a unique hydrodynamic phenomenon during flood tide in the Qiantang Estuary.The tidal bore propagation around the similar right-angle shoreline is rarely documented in tidal estuaries.To investigate tidal bores around this shoreline,a hydrodynamic model combined with a theoretical method is employed to reveal the characteristics of the bore propagation.The theoretical solution of the tidal bore intensity is deduced to illustrate the relationship of the incident tidal bores and the back-flow bores during the propagation.The hydrodynamic model based on shallow water equation is employed to perform the simulation of tidal bores in the estuary.Model results with respect to the bore height and the propagation speed of tidal bores have a favourable agreement with field data.The tidal bore dynamics in the neighborhood of the similar right-angle shoreline are elucidated.The characteristics of tidal bores in terms of water surface,velocity,bore steepness and the intensity are illustrated and the back-flow bore is analyzed by numerical and theoretical methods around the similar right-angle shoreline.The height of the back-flow bore relative to the incident tidal bore ranges from 1.05 to 1.77.Model result reveals that the ambient water depth and the shape of the similar right-angle shoreline are contributed to the back-flow bore formation.展开更多
Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied fo...Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied for the generation mechanism, propagation features and influencing factors, the curved channel will complicate the characteristics of tidal bore propagation, which need further investigation compared with straight channel. In this study, the flume experiments for both undular and breaking bores’ propagation in curved channel are performed to measure the freesurface elevation and flow velocity by ultrasonic sensors and ADV respectively. The propagation characteristics,including tidal bore height, cross-section surface gradient, tidal bore propagation celerity, and flow velocity are obtained for both sides of the curved channel. And three bore intensities are set for each type of tidal bores. The freesurface gradients are consistently enlarged in high-curvature section for undular and breaking bores, but have distinct behaviors in low-curvature section. The spatial distributions of tidal bore propagation celerity and flow velocity are compared between concave and convex banks. This work will provide experimental reference for engineering design of beach and seawall protection, erosion reduction and siltation promotion in estuary areas with the existence of tidal bores.展开更多
To study the hydrodynamics of tidal bore, a physical modeling study is carried out in a rectangular flume with considera- tions of the tidal bore heights, the propagation speeds, the tidal current velocities, the fron...To study the hydrodynamics of tidal bore, a physical modeling study is carried out in a rectangular flume with considera- tions of the tidal bore heights, the propagation speeds, the tidal current velocities, the front steepness, and the bore shapes. After the validation with the field observations, the experimental results are analyzed, and it is shown that: (1) the greater initial ebb velocity or the larger initial water depth impedes the tidal bore propagation, (2) the maximum bore height appears at an initial ebb velocity in the range of 0.5 m/s-l.5 m/s. (3) when the Froude number exceeds 1.2, an undular bore appears, atter it exceeds 1.3, a breaking bore occurs, and after it exceeds 1.7, the bore is broken.展开更多
In this paper, the turbulence characteristics of the tidal flow in the Qiantang River, China, the world-famous Qiantang bore, are studied. A detailed field observation at the Yanguan section of the Qiantang River was ...In this paper, the turbulence characteristics of the tidal flow in the Qiantang River, China, the world-famous Qiantang bore, are studied. A detailed field observation at the Yanguan section of the Qiantang River was carried out during the spring tide in October 2010 with a continuous collection of high frequency turbulence data. The data analysis shows that the hydrodynamic processes are characterized by a strong tidal bore. Statistics of the turbulence such as the probability distributions of the turbulent components, the variance terms and the covariance terms are found consistent with those of previous studies of estuaries without the tidal bore. However, along the vertical profile, the distributions of all variables become more scattered downwards. The horizontal turbulence fluctuations are of a similar magnitude while the vertical turbulence has a fluctuation magnitffde about 1/3 of that of the horizontal turbulences. The fluctuation strengths and the Reynolds stresses are much larger than those of other estuaries when the bore arrives. The bottom shear stress varies periodically with the tides, less than 0.44 N/m2 during the ebb but is increased drastically at the bore arrival, with the maximum being 0.92 N/m2. A good linear relationship is found between the bottom shear stress and the bottom suspended sediment concentration.展开更多
In this paper,the effect of the dike line adjustment on the Qiantang Tidal Bore(QTB)is studied by physcial experiments.A lab-scale physical model of the Qiantang Estuary is built and the tidal bore is generated.With...In this paper,the effect of the dike line adjustment on the Qiantang Tidal Bore(QTB)is studied by physcial experiments.A lab-scale physical model of the Qiantang Estuary is built and the tidal bore is generated.With this model,the formation and pro-pagation processes of the tidal bore are simulated with or without the dike line adjustment.It is shown that the adjusted dike line changes the direction of the reflected tidal bore.The height of the tidal bore increases in the upstream region where the dike line is contracted.In the tested bent and forking regimes,the bore height at the upstream station is increased by 0.10 m and 0.04 m,respectively.Furthermore,the crossing bore still exists near the Daquekou station and the location slightly moves by about 3 km to the downstream region.展开更多
A tidal bore is a unique Earth surface process, characterized by its highly destructive energy, predictable periodicities and magni-tudes, and the production of characteristic sedimentary features. Tidal bores and ass...A tidal bore is a unique Earth surface process, characterized by its highly destructive energy, predictable periodicities and magni-tudes, and the production of characteristic sedimentary features. Tidal bores and associated rapid flood flows are highly turbulent flows of the upper-flow regime with a velocity over several meters per second. Reynolds (Re) and Froude (Fr) numbers, respectively, are larger than 104 and 1.0, making them significantly different from regular tidal flows but analogous to turbidity currents. Until now, understanding of tidal-bore depositional processes and products has been limited because of the difficulty and hazards involved with gauging tidal bores directly. The Qiantang bore is known as the largest breaking bore in the world. Field surveys were carried out in May 2010, along the north bank of the Qiantang Estuary to observe the occurrence of peak bores, including regular observations of current, water level and turbidity at the main channel. Several short cores were sampled on the intertidal flats to study the characteristic sedimentary features of tidal bores. Hydrodynamic and sedimentological studies show that the processes of sediment resuspension, transport and deposition are controlled primarily by the tidal bores, and the subsequent abruptly accelerated and decelerated flood flows, which only account for one tenth of each semidiurnal tidal cycle in the estuary. Tidal-bore deposits are generally poorly sorted because of rapid sedimentation after highly mixed suspension by intense turbulence. This behavior is characteristic of the absence of tractive-current depositional components in a C-M diagram. It also goes along with well-developed massive bedding, graded bedding, basal erosion structures, convolute bedding and dewatering structures. Together, these sedimentary features can constitute fingerprinting of turbidites, widely distributed in the deep-water environment. However, a tidal bore is triggered by intensely deformed tidal waves propagating into a shallow-water environment, which returns to regular tidal flows rapidly after the passage of the bore head. The tidal-bore deposits are usually bounded by the intertidal-flat deposits with typical tidal beddings at the top and on both flanks. The difference between tidal-bore deposits (TBD) and tidal sandy/muddy deposits (TSD/TMD) is evident not only in sedimentary structures, but also in the grain-size composition. They can be clearly distinguished in grain-size bivariate plots, typically the plot of mean grain size vs. standard deviation (or sorting). Some trend variations generally exist in mean grain size with TBD>TSD>TMD, sorting with TMD>TBD>TSD (larger value indicating poorer sorting), and both skewness and kurtosis with TSD>TBD>TMD. These findings will undoubtedly shed new light on our understanding of tidal-bore sedimentology, ancient tidal-bore sedimentary facies and environments, and related oil-and-gas field prospecting.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42276176)the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(Grant No.LZJWZ23E090006)+2 种基金the Science and Technology Project of Zhejiang Provincial Department of Water Resources(Grant No.RC2233)the Key Project of Zhejiang Provincial Natural Science Foundation(Grant No.LZJWZ23E090003)the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(Grant No.LZJWY24E090002).
文摘Understanding the undular tidal bores in the Qiantang River is essential for effective river management and maintenance.While breaking tidal bores have been studied extensively, reports on undular tidal bores in the Qiantang Riverremain limited. Furthermore, observed data on undular tidal bores fulfilling the requirements of short measurementtime intervals, and spring, medium, and neap tide coverage, and providing detailed data for the global vertical stratificationof flow velocity are quite limited. Based on field observations at Qige in the Qiantang estuary, we analyzedthe characteristics of undular tidal bores. The results showed that the flooding amplitude (a) of the first wave isalways larger than its ebbing amplitude (b). Moreover, the vertical distribution of the maximum flood velocity exhibitesthree shapes, influenced by the tidal range, while that of the maximum ebb velocity exhibites a single shape. Duringthe initial phase of the flood tide in the spring and medium tides, the upper water body experiences multiple oscillatingchanges along the flow direction, corresponding to the alternating process of the crest and trough of the tide levelupon the arrival of the tidal bore. The tidal range is a crucial parameter in tidal bore hydrodynamics. By establishingthe relationship between hydrodynamic parameters and tidal range, other hydrodynamic parameters, such as the tidalbore height, maximum flood depth–averaged velocity, maximum flood stratified velocity at the measurement points,and duration of the flood tide current, can be effectively predicted, thereby providing an important reference for rivermanagement and maintenance.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42276176,51779228,and 41706099)the Zhejiang Province Public Welfare Technology Application Research Project(Grant No.LGF20E090003)the Science and Technology Project of Zhejiang Water Conservancy(Grant No.RB2001 and RB2121).
文摘Tidal bores are a unique hydrodynamic phenomenon during flood tide in the Qiantang Estuary.The tidal bore propagation around the similar right-angle shoreline is rarely documented in tidal estuaries.To investigate tidal bores around this shoreline,a hydrodynamic model combined with a theoretical method is employed to reveal the characteristics of the bore propagation.The theoretical solution of the tidal bore intensity is deduced to illustrate the relationship of the incident tidal bores and the back-flow bores during the propagation.The hydrodynamic model based on shallow water equation is employed to perform the simulation of tidal bores in the estuary.Model results with respect to the bore height and the propagation speed of tidal bores have a favourable agreement with field data.The tidal bore dynamics in the neighborhood of the similar right-angle shoreline are elucidated.The characteristics of tidal bores in terms of water surface,velocity,bore steepness and the intensity are illustrated and the back-flow bore is analyzed by numerical and theoretical methods around the similar right-angle shoreline.The height of the back-flow bore relative to the incident tidal bore ranges from 1.05 to 1.77.Model result reveals that the ambient water depth and the shape of the similar right-angle shoreline are contributed to the back-flow bore formation.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFE0104500)the National Natural Science Foundation of China (Grant No. 52271271)+2 种基金the National Natural Science Foundation of China (Grant No. 41906183)the National Natural Science Foundation of China (Grant No.52101308)the Fundamental Research Funds for the Central Universities (Grant No.B220202080)。
文摘Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied for the generation mechanism, propagation features and influencing factors, the curved channel will complicate the characteristics of tidal bore propagation, which need further investigation compared with straight channel. In this study, the flume experiments for both undular and breaking bores’ propagation in curved channel are performed to measure the freesurface elevation and flow velocity by ultrasonic sensors and ADV respectively. The propagation characteristics,including tidal bore height, cross-section surface gradient, tidal bore propagation celerity, and flow velocity are obtained for both sides of the curved channel. And three bore intensities are set for each type of tidal bores. The freesurface gradients are consistently enlarged in high-curvature section for undular and breaking bores, but have distinct behaviors in low-curvature section. The spatial distributions of tidal bore propagation celerity and flow velocity are compared between concave and convex banks. This work will provide experimental reference for engineering design of beach and seawall protection, erosion reduction and siltation promotion in estuary areas with the existence of tidal bores.
基金supported by the National Natural Science Foundation of China (Grant No. 51109188)the National Key Basic Research Program of China (973 Program, Grant No.2012CB957704)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes (Grant No.201001072)
文摘To study the hydrodynamics of tidal bore, a physical modeling study is carried out in a rectangular flume with considera- tions of the tidal bore heights, the propagation speeds, the tidal current velocities, the front steepness, and the bore shapes. After the validation with the field observations, the experimental results are analyzed, and it is shown that: (1) the greater initial ebb velocity or the larger initial water depth impedes the tidal bore propagation, (2) the maximum bore height appears at an initial ebb velocity in the range of 0.5 m/s-l.5 m/s. (3) when the Froude number exceeds 1.2, an undular bore appears, atter it exceeds 1.3, a breaking bore occurs, and after it exceeds 1.7, the bore is broken.
基金Project supported by the Natural Natural Science Foundation of China(Grant No.51379190,41376099)the Ministry of Water Resources’special funds for scientific research on public causes(Grant No.201001072)the Zhejiang Province Key Science and Technology Innovation Team Building Project(Grant No.2010R50035)
文摘In this paper, the turbulence characteristics of the tidal flow in the Qiantang River, China, the world-famous Qiantang bore, are studied. A detailed field observation at the Yanguan section of the Qiantang River was carried out during the spring tide in October 2010 with a continuous collection of high frequency turbulence data. The data analysis shows that the hydrodynamic processes are characterized by a strong tidal bore. Statistics of the turbulence such as the probability distributions of the turbulent components, the variance terms and the covariance terms are found consistent with those of previous studies of estuaries without the tidal bore. However, along the vertical profile, the distributions of all variables become more scattered downwards. The horizontal turbulence fluctuations are of a similar magnitude while the vertical turbulence has a fluctuation magnitffde about 1/3 of that of the horizontal turbulences. The fluctuation strengths and the Reynolds stresses are much larger than those of other estuaries when the bore arrives. The bottom shear stress varies periodically with the tides, less than 0.44 N/m2 during the ebb but is increased drastically at the bore arrival, with the maximum being 0.92 N/m2. A good linear relationship is found between the bottom shear stress and the bottom suspended sediment concentration.
基金supported by the National Nature Science Foundation of China(Grant Nos.41376099,51609214 and 41676085)the Public Sector of the Ministry of Water Resources Research(Grant No.201401010)
文摘In this paper,the effect of the dike line adjustment on the Qiantang Tidal Bore(QTB)is studied by physcial experiments.A lab-scale physical model of the Qiantang Estuary is built and the tidal bore is generated.With this model,the formation and pro-pagation processes of the tidal bore are simulated with or without the dike line adjustment.It is shown that the adjusted dike line changes the direction of the reflected tidal bore.The height of the tidal bore increases in the upstream region where the dike line is contracted.In the tested bent and forking regimes,the bore height at the upstream station is increased by 0.10 m and 0.04 m,respectively.Furthermore,the crossing bore still exists near the Daquekou station and the location slightly moves by about 3 km to the downstream region.
基金supported by the National Natural Science Foundation of China (40876021 and 41076016)the State Key Lab of Marine Geology(MG200907)+2 种基金SOA Key Lab of Marine Sedimentology & Environmental Geology (MASEG200802)the Specialized Research Fund for the Doctoral Program of Higher Education (20090072110004)the Fundamental Research Funds for the Central University
文摘A tidal bore is a unique Earth surface process, characterized by its highly destructive energy, predictable periodicities and magni-tudes, and the production of characteristic sedimentary features. Tidal bores and associated rapid flood flows are highly turbulent flows of the upper-flow regime with a velocity over several meters per second. Reynolds (Re) and Froude (Fr) numbers, respectively, are larger than 104 and 1.0, making them significantly different from regular tidal flows but analogous to turbidity currents. Until now, understanding of tidal-bore depositional processes and products has been limited because of the difficulty and hazards involved with gauging tidal bores directly. The Qiantang bore is known as the largest breaking bore in the world. Field surveys were carried out in May 2010, along the north bank of the Qiantang Estuary to observe the occurrence of peak bores, including regular observations of current, water level and turbidity at the main channel. Several short cores were sampled on the intertidal flats to study the characteristic sedimentary features of tidal bores. Hydrodynamic and sedimentological studies show that the processes of sediment resuspension, transport and deposition are controlled primarily by the tidal bores, and the subsequent abruptly accelerated and decelerated flood flows, which only account for one tenth of each semidiurnal tidal cycle in the estuary. Tidal-bore deposits are generally poorly sorted because of rapid sedimentation after highly mixed suspension by intense turbulence. This behavior is characteristic of the absence of tractive-current depositional components in a C-M diagram. It also goes along with well-developed massive bedding, graded bedding, basal erosion structures, convolute bedding and dewatering structures. Together, these sedimentary features can constitute fingerprinting of turbidites, widely distributed in the deep-water environment. However, a tidal bore is triggered by intensely deformed tidal waves propagating into a shallow-water environment, which returns to regular tidal flows rapidly after the passage of the bore head. The tidal-bore deposits are usually bounded by the intertidal-flat deposits with typical tidal beddings at the top and on both flanks. The difference between tidal-bore deposits (TBD) and tidal sandy/muddy deposits (TSD/TMD) is evident not only in sedimentary structures, but also in the grain-size composition. They can be clearly distinguished in grain-size bivariate plots, typically the plot of mean grain size vs. standard deviation (or sorting). Some trend variations generally exist in mean grain size with TBD>TSD>TMD, sorting with TMD>TBD>TSD (larger value indicating poorer sorting), and both skewness and kurtosis with TSD>TBD>TMD. These findings will undoubtedly shed new light on our understanding of tidal-bore sedimentology, ancient tidal-bore sedimentary facies and environments, and related oil-and-gas field prospecting.