Besides seasonal variation, instantaneous variation of thermal layer will occur under the effects of tide, tidal current and wind disturbance. In this study the numerical simulation has been first carried out on fluct...Besides seasonal variation, instantaneous variation of thermal layer will occur under the effects of tide, tidal current and wind disturbance. In this study the numerical simulation has been first carried out on fluctuation and undulation of thermal layer under influence of tide (simultaneous input of 8 tidal components). The study reveals the geographic distribution of thermal layer fluctuation in the entire study region and temporal and spatial variations of the undulation in tidal period superposing on the fluctuation. Especially, the wave with large amplitude simulated is consistent with observation in the channal and the sea areas with a convex coastline and complex variation of depth, internal relations of tide, tidal current, residual current as well as the factors such as geography, and the fluctuation of thermal layer is induced by residual current due to unsymmetry which occurs as a result of the tidal movement in lower layer influenced by friction and geography, meanwhile, analysis indicates that the fluctuation of thermal layer and tidal oscillation are different undulations in character.展开更多
In this article, a tide simulation system based on a two-way water pump technique is developed. Using this system and numerical simulations, the groundwater table fluctuation characteristics, relative over height of g...In this article, a tide simulation system based on a two-way water pump technique is developed. Using this system and numerical simulations, the groundwater table fluctuation characteristics, relative over height of groundwater table, and influencing factors of over height are investigated. The experimental and numerical results indicate that the groundwater table fluctuation is of periodic, and of asymmetric. The amplitude of groundwater table fluctuations decreases with the increase of the onshore distances. There are phase lags of groundwater table fluctuations for different monitoring points. The tide can bring about remarkable over height of coastal groundwater table. The dominating factors bring about over height include the tide amplitude, aquifer thickness and tide frequency. Under experimental conditions, the relative tide amplitude over height may exceeded 50% of the maximal tide amplitude, and reach about 10% of aquifer thickness.展开更多
文摘Besides seasonal variation, instantaneous variation of thermal layer will occur under the effects of tide, tidal current and wind disturbance. In this study the numerical simulation has been first carried out on fluctuation and undulation of thermal layer under influence of tide (simultaneous input of 8 tidal components). The study reveals the geographic distribution of thermal layer fluctuation in the entire study region and temporal and spatial variations of the undulation in tidal period superposing on the fluctuation. Especially, the wave with large amplitude simulated is consistent with observation in the channal and the sea areas with a convex coastline and complex variation of depth, internal relations of tide, tidal current, residual current as well as the factors such as geography, and the fluctuation of thermal layer is induced by residual current due to unsymmetry which occurs as a result of the tidal movement in lower layer influenced by friction and geography, meanwhile, analysis indicates that the fluctuation of thermal layer and tidal oscillation are different undulations in character.
基金supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No.0701006B)
文摘In this article, a tide simulation system based on a two-way water pump technique is developed. Using this system and numerical simulations, the groundwater table fluctuation characteristics, relative over height of groundwater table, and influencing factors of over height are investigated. The experimental and numerical results indicate that the groundwater table fluctuation is of periodic, and of asymmetric. The amplitude of groundwater table fluctuations decreases with the increase of the onshore distances. There are phase lags of groundwater table fluctuations for different monitoring points. The tide can bring about remarkable over height of coastal groundwater table. The dominating factors bring about over height include the tide amplitude, aquifer thickness and tide frequency. Under experimental conditions, the relative tide amplitude over height may exceeded 50% of the maximal tide amplitude, and reach about 10% of aquifer thickness.