Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency ha...Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency have been obtained by means of a Bessel function. A simple and analytical formula for Fermi energy has been derived with the help of the Gauss integration method. The results of the proposed formulas are in good agreement with accurate numerical solutions. The formulas have been successfully used in the calculation of carrier density and Fermi energy in a miniband superlattice system. Their accuracy is in the order of 10-5.展开更多
The electronic band structures of periodic models for S^H compounds are investigated by the density functional theory. Our results show that the Si H compound changes from indirect-gap semiconductor to direct-gap semi...The electronic band structures of periodic models for S^H compounds are investigated by the density functional theory. Our results show that the Si H compound changes from indirect-gap semiconductor to direct-gap semiconductor with the increase of H content. The density of states, the partial density of states and the atomic charge population are examined in detail to explore the origin of this phenomenon. It is found that the Si-Si bonds are affected by H atoms, which results in the electronic band transformation from indirect gap to direct gap. This is confirmed by the nearest neighbour semi-empirical tight-binding (TB) theory.展开更多
An accurate total energy calculation is essential in materials computation.To date,many tight-binding(TB)approaches based on parameterized hopping can produce electronic structures comparable to those obtained using f...An accurate total energy calculation is essential in materials computation.To date,many tight-binding(TB)approaches based on parameterized hopping can produce electronic structures comparable to those obtained using first-principles calculations.However,TB approaches still have limited applicability for determining material properties derived from the total energy.That is,the predictive power of the TB total energy is impaired by an inaccurate evaluation of the repulsive energy.The complexity associated with the parametrization of TB repulsive potentials is the weak link in this evaluation.In this study,we propose a new method for obtaining the pairwise TB repulsive potential for crystalline materials by employing the Chen-Möbius inversion theorem.We show that the TB-based phonon dispersions,calculated using the resulting repulsive potential,compare well with those obtained by first-principles calculations for various systems,including covalent and ionic bulk materials and twodimensional materials.The present approach only requires the first-principles total energy and TB electronic band energy as input and does not involve any parameters.This striking feature enables us to generate repulsive potentials programmatically.展开更多
In this paper we propose a type of new analytical method to investigate the localized states in the armchair graphene-like nanoribbons. The method is based on the tight-binding model and with a standing wave assumptio...In this paper we propose a type of new analytical method to investigate the localized states in the armchair graphene-like nanoribbons. The method is based on the tight-binding model and with a standing wave assumption. The system of armchair graphene-like nanoribbons includes the armchair supercells with arbitrary elongation-type line defects and the semi-infinite nanoribbons. With this method, we analyze many interesting localized states near the line defects in the graphene and boron-nitride nanoribbons. We also derive the analytical expressions and the criteria for the localized states in the semi-infinite nanoribbons.展开更多
The band structures of Group IVB (Ti, Zr, Hf), VB (V, Nb, Ta) and VIE (Cr, Mo, W) transition metals and some of their carbides and nitrides (TiN, ZrN, HfN, VC, NbC, TaC, VN, NbN, TaN) with NaCl-type (B1-type) structur...The band structures of Group IVB (Ti, Zr, Hf), VB (V, Nb, Ta) and VIE (Cr, Mo, W) transition metals and some of their carbides and nitrides (TiN, ZrN, HfN, VC, NbC, TaC, VN, NbN, TaN) with NaCl-type (B1-type) structure have been calculated by using the tight-binding method within the Extended Huckel approximation (EHT). The energy bands, densities of states and crystal orbital overlap populations are given. The relationship between the bonding properties and the superconducting transition temperatures (T-c) of them is discussed. The influences of various kinds of metallic atoms and changes of bond lengths on T-c are also discussed.展开更多
文摘Analytical formulas for evaluating the relation of carrier density and Fermi energy for semiconductors with a tight-binding band have been proposed. The series expansions for a carrier density with fast convergency have been obtained by means of a Bessel function. A simple and analytical formula for Fermi energy has been derived with the help of the Gauss integration method. The results of the proposed formulas are in good agreement with accurate numerical solutions. The formulas have been successfully used in the calculation of carrier density and Fermi energy in a miniband superlattice system. Their accuracy is in the order of 10-5.
基金supported by the National Natural Science Foundation of China (Grant No. 50775101)the New Century Excellent Talents (Grant No. NCET-04-0515)+2 种基金the Jiangsu Provincial Science and Technology Supporting Project,China (Grant No. BE2008030)Qing Lan Project (2008-04)Jiangsu University Natural Science Foundation of China (Grant No. 07KJB430023)
文摘The electronic band structures of periodic models for S^H compounds are investigated by the density functional theory. Our results show that the Si H compound changes from indirect-gap semiconductor to direct-gap semiconductor with the increase of H content. The density of states, the partial density of states and the atomic charge population are examined in detail to explore the origin of this phenomenon. It is found that the Si-Si bonds are affected by H atoms, which results in the electronic band transformation from indirect gap to direct gap. This is confirmed by the nearest neighbour semi-empirical tight-binding (TB) theory.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274035,and 11874088)supported by the Fundamental Research Funds for the Central Universities。
文摘An accurate total energy calculation is essential in materials computation.To date,many tight-binding(TB)approaches based on parameterized hopping can produce electronic structures comparable to those obtained using first-principles calculations.However,TB approaches still have limited applicability for determining material properties derived from the total energy.That is,the predictive power of the TB total energy is impaired by an inaccurate evaluation of the repulsive energy.The complexity associated with the parametrization of TB repulsive potentials is the weak link in this evaluation.In this study,we propose a new method for obtaining the pairwise TB repulsive potential for crystalline materials by employing the Chen-Möbius inversion theorem.We show that the TB-based phonon dispersions,calculated using the resulting repulsive potential,compare well with those obtained by first-principles calculations for various systems,including covalent and ionic bulk materials and twodimensional materials.The present approach only requires the first-principles total energy and TB electronic band energy as input and does not involve any parameters.This striking feature enables us to generate repulsive potentials programmatically.
基金Project supported by the Starting Foundation for the‘Hundred Talent Program’of Chongqing University,China(Grants No.0233001104429)
文摘In this paper we propose a type of new analytical method to investigate the localized states in the armchair graphene-like nanoribbons. The method is based on the tight-binding model and with a standing wave assumption. The system of armchair graphene-like nanoribbons includes the armchair supercells with arbitrary elongation-type line defects and the semi-infinite nanoribbons. With this method, we analyze many interesting localized states near the line defects in the graphene and boron-nitride nanoribbons. We also derive the analytical expressions and the criteria for the localized states in the semi-infinite nanoribbons.
基金Project supported by the National Natural Science Foundation of China and the Foundation of the State Key Laboratory of Structural Chemistry of China.
文摘The band structures of Group IVB (Ti, Zr, Hf), VB (V, Nb, Ta) and VIE (Cr, Mo, W) transition metals and some of their carbides and nitrides (TiN, ZrN, HfN, VC, NbC, TaC, VN, NbN, TaN) with NaCl-type (B1-type) structure have been calculated by using the tight-binding method within the Extended Huckel approximation (EHT). The energy bands, densities of states and crystal orbital overlap populations are given. The relationship between the bonding properties and the superconducting transition temperatures (T-c) of them is discussed. The influences of various kinds of metallic atoms and changes of bond lengths on T-c are also discussed.