Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Cha...Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution.展开更多
1 Introduction Yanchang Formation in Upper Triassic,Ordos basin contains the most abundant hydrocarbon resources in North China(Wang et al.,2014).The sandstones are the most important oil-bearing reservoirs in Yanchang
In the Triassic Yanchang Formation, Jiyuan-Wuqi area, Ordos Basin, the Chang 6 reservoir is contacted to the Chang 7 high-quality source rock, but the oil pools are unevenly distributed, and complex in oil and water d...In the Triassic Yanchang Formation, Jiyuan-Wuqi area, Ordos Basin, the Chang 6 reservoir is contacted to the Chang 7 high-quality source rock, but the oil pools are unevenly distributed, and complex in oil and water distribution. Through cores observation and fracture statistics, combined with comprehensive analyses of physical property, mercury injection, logging and geochemical data, and comparisons of the sandbodies scales, reservoir physical properties, argillaceous laminae and fractures between source and reservoir in the eastern and western oil-bearing areas and in the central water producing area, it is found that the hydrocarbon accumulation patterns are different in the eastern, central and western areas, and the characteristics of hydrocarbon migration under the background of double-provenance were sorted out. The study results show that the crude oil in the eastern area has different Pr/Ph and sterane distribution from that in the western area. The oil and gas primarily migrated vertically. The high-quality source rocks and favorable source-reservoir-cap combinations lay the foundation for large-scale oil and gas accumulations. Vertically, the oil and gas enrichment is controlled by the scale of sandbody and the difference of physical properties, while on the plane, it is controlled by the connectivity of sandbodies, the argillaceous laminae between source rock and reservoir, the reservoir physical property and the fractures. The sandbodies of oil-rich zones in the eastern and western areas have large thickness, low shale content, good physical properties, weak heterogeneity, few argillaceous laminae and abundant fractures, all of which are favorable for the vertical migration and accumulation of oil and gas. In contrast, in the middle area with converging provenances, the reservoirs, composed of thin sandbodies, features rapid variation in lithology and physical properties, strong heterogeneity, poor continuity of sandbodies, abundant argillaceous laminae between source rock and reservoir, and few fractures, makes it difficult for the oil and gas to migrate vertically, and results in low oil enrichment degree ultimately. For the exploration of continental multiple-provenance tight reservoirs, not only the good-property source rocks and reservoirs, but more importantly the source-reservoir contact relationship and the effect of fractures on the hydrocarbon migration and accumulation should be considered.展开更多
Tight sandstone reservoirs are widely developed in the Mesozoic Yanchang Formation of the Ordos Basin,China.There is a lack of understanding on the sedimentary setting,source-reservoir relationship and oil accumulatio...Tight sandstone reservoirs are widely developed in the Mesozoic Yanchang Formation of the Ordos Basin,China.There is a lack of understanding on the sedimentary setting,source-reservoir relationship and oil accumulation conditions in this area.In this study,through the comprehensive analysis of the distri-bution of tight oil,we evaluated the properties and petrological features of reservoir,geochemical characteristics of source rocks,the source-reservoir relationship,as well as the trapping,preservation and accumulation conditions of tight oil in the Chang 7 Member,and predicted the sweet spots of tight oil in the study area.The results show that the Chang 7 Member is a typical low-porosity and ultra-low permeability reservoir with great tightness,small pore throat and high capillary pressure,and must have been of near-source accumulation.The source rocks are mainly developed in the Chang 7_(3) submember,and the reservoirs mainly occur in the Chang 7_(1) and Chang 7_(2) submembers,forming a combination mode of“lower source rock and upper reservoir”.Sandbodies with good connectivity and fractures being well developed in local areas are the main hydrocarbon transport systems.The abnormal high pressure caused by hydrocarbon generation and pressurization is the main driving force of tight oil accumulation.The mode of hydrocarbon transportation is dominated by the vertical or lateral migration from under-lying source rocks or adjacent source rocks to reservoirs within a short distance.Following the integrated evaluation of lithology,physical properties and oil saturation of reservoirs and geochemical character-istics of source rocks,we grouped the sweet spots of Chang 7 Member into three types:Type I,Type II and Type III.Among others,the Type I sweet spots are the best in terms of porosity,permeability and source rock thickness and hydrocarbon enrichment which should be the focus of oilfield development.This study lays an important foundation for the economic and efficient development of tight oil in the Chang 7 Member of Heshui area,and has important implications on tight sandstone reservoirs in other regions of Ordos Basin in China.展开更多
Tight oil in the redeposited carbonates was mainly distributed in the Lower Submember of Member 3 of Shahejie Formation in Shulu sag of Jizhong depression,North China.Through high-resolution 3D seismic data,well loggi...Tight oil in the redeposited carbonates was mainly distributed in the Lower Submember of Member 3 of Shahejie Formation in Shulu sag of Jizhong depression,North China.Through high-resolution 3D seismic data,well logging data and drilling data,the Lower Submember of Member 3 of Shahejie Formation was divided into 5 third-order sequences and 15 parasequence sets.The redeposited marl and rudstone were major reserving horizons of tight oil,and ten reserving space types were developed and could be classified into two main categories,i.e.,pores and fractures.Two types of tight oil reservoirs were established,i.e.,the marl hydrocarbon reservoir of the source-reservoir integration and the rudstone hydrocarbon reservoirs of the source-reservoir paragenesis.The assemblage relationship among the high-quality source rocks,system tracts with the source-reservoir configuration was the major control factor for tight oil accumulation in the redeposited carbonates.The lacustrine transgressive system tracts and highstand systems tracts in SQ1 to SQ5 were the favorable horizons for development of the marl hydrocarbon reservoir,the lowstand system tracts in SQ1 to SQ3 were the favorable horizons for development of the rudstone hydrocarbon reservoir.展开更多
综合利用地球化学、扫描电镜、岩心薄片、测井等资料以及油井生产数据等,对鄂尔多斯盆地陕北地区三叠系延长组7段储层特征、烃源岩特征和致密油分布特征进行了分析,从烃源岩展布、输导体系和源-储组合关系3个方面对致密油差异富集控制...综合利用地球化学、扫描电镜、岩心薄片、测井等资料以及油井生产数据等,对鄂尔多斯盆地陕北地区三叠系延长组7段储层特征、烃源岩特征和致密油分布特征进行了分析,从烃源岩展布、输导体系和源-储组合关系3个方面对致密油差异富集控制因素进行了探讨,并总结了成藏模式。研究结果表明:(1)陕北地区长7段致密砂岩储层主要分布在一亚段(长71)和二亚段(长72),以灰色—灰白色长石砂岩和岩屑长石砂岩为主,长71和长72平均孔隙度分别为5.56%和7.32%,平均渗透率分别为0.097 m D和0.110 m D,长72储层物性更好;孔隙空间以溶孔为主,发育少量粒间孔。(2)研究区烃类主要来源于本地长72顶部和长73这2套烃源岩,平均厚度大于20 m,有机质丰度高,平均TOC值为3.02%,干酪根类型以Ⅰ型和Ⅱ1型为主,处于生烃高峰期,平均生烃量为270.2×10^(4)t/km^(2),长73烃源岩生烃潜力更大,供烃至长72储层,长71致密油来源于长72烃源岩;新安边地区三角洲前缘亚相末端的长72储层中致密油由湖盆烃源岩侧向供烃。(3)研究区致密油富集受烃源岩展布、砂体连通性以及源-储组合共同控制,在长72更富集,在新安边地区分布面积最大,安塞地区无大规模致密油聚集;纵向上和平面上致密油的聚集差异受控于烃源岩厚度和源-储组合关系,下生上储、上下生油而中间储集和砂泥互层时含油性更好;新安边地区三角洲前缘亚相末端的长72致密油聚集规模大于三角洲前缘主体,是由于三角洲前缘末端发育的局部连通砂体阻碍了湖盆烃类物质的侧向运移。(4)研究区致密油为“源控-砂控”成藏模式,远源河道优势砂体尖灭处和近源局部连通的砂体是有利勘探区。展开更多
基金the National Natural Science Foundation of China(Grant No.41625009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA14010404)The authors also extend their thanks to the editors and reviewers for their positive and constructive comments and suggestions.
文摘Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution.
基金financially supported by the National Natural Science Foundation of China (grant No. 41272115)
文摘1 Introduction Yanchang Formation in Upper Triassic,Ordos basin contains the most abundant hydrocarbon resources in North China(Wang et al.,2014).The sandstones are the most important oil-bearing reservoirs in Yanchang
基金Supported by the National Natural Science Foundation of China(41872165,41572137)
文摘In the Triassic Yanchang Formation, Jiyuan-Wuqi area, Ordos Basin, the Chang 6 reservoir is contacted to the Chang 7 high-quality source rock, but the oil pools are unevenly distributed, and complex in oil and water distribution. Through cores observation and fracture statistics, combined with comprehensive analyses of physical property, mercury injection, logging and geochemical data, and comparisons of the sandbodies scales, reservoir physical properties, argillaceous laminae and fractures between source and reservoir in the eastern and western oil-bearing areas and in the central water producing area, it is found that the hydrocarbon accumulation patterns are different in the eastern, central and western areas, and the characteristics of hydrocarbon migration under the background of double-provenance were sorted out. The study results show that the crude oil in the eastern area has different Pr/Ph and sterane distribution from that in the western area. The oil and gas primarily migrated vertically. The high-quality source rocks and favorable source-reservoir-cap combinations lay the foundation for large-scale oil and gas accumulations. Vertically, the oil and gas enrichment is controlled by the scale of sandbody and the difference of physical properties, while on the plane, it is controlled by the connectivity of sandbodies, the argillaceous laminae between source rock and reservoir, the reservoir physical property and the fractures. The sandbodies of oil-rich zones in the eastern and western areas have large thickness, low shale content, good physical properties, weak heterogeneity, few argillaceous laminae and abundant fractures, all of which are favorable for the vertical migration and accumulation of oil and gas. In contrast, in the middle area with converging provenances, the reservoirs, composed of thin sandbodies, features rapid variation in lithology and physical properties, strong heterogeneity, poor continuity of sandbodies, abundant argillaceous laminae between source rock and reservoir, and few fractures, makes it difficult for the oil and gas to migrate vertically, and results in low oil enrichment degree ultimately. For the exploration of continental multiple-provenance tight reservoirs, not only the good-property source rocks and reservoirs, but more importantly the source-reservoir contact relationship and the effect of fractures on the hydrocarbon migration and accumulation should be considered.
基金This work was supported by PetroChina Innovation Foundation(No.2020D-5007-0202)Opening Foundation of State Key Laboratory of Continental Dynamics,Northwest University(No.20LCD09).
文摘Tight sandstone reservoirs are widely developed in the Mesozoic Yanchang Formation of the Ordos Basin,China.There is a lack of understanding on the sedimentary setting,source-reservoir relationship and oil accumulation conditions in this area.In this study,through the comprehensive analysis of the distri-bution of tight oil,we evaluated the properties and petrological features of reservoir,geochemical characteristics of source rocks,the source-reservoir relationship,as well as the trapping,preservation and accumulation conditions of tight oil in the Chang 7 Member,and predicted the sweet spots of tight oil in the study area.The results show that the Chang 7 Member is a typical low-porosity and ultra-low permeability reservoir with great tightness,small pore throat and high capillary pressure,and must have been of near-source accumulation.The source rocks are mainly developed in the Chang 7_(3) submember,and the reservoirs mainly occur in the Chang 7_(1) and Chang 7_(2) submembers,forming a combination mode of“lower source rock and upper reservoir”.Sandbodies with good connectivity and fractures being well developed in local areas are the main hydrocarbon transport systems.The abnormal high pressure caused by hydrocarbon generation and pressurization is the main driving force of tight oil accumulation.The mode of hydrocarbon transportation is dominated by the vertical or lateral migration from under-lying source rocks or adjacent source rocks to reservoirs within a short distance.Following the integrated evaluation of lithology,physical properties and oil saturation of reservoirs and geochemical character-istics of source rocks,we grouped the sweet spots of Chang 7 Member into three types:Type I,Type II and Type III.Among others,the Type I sweet spots are the best in terms of porosity,permeability and source rock thickness and hydrocarbon enrichment which should be the focus of oilfield development.This study lays an important foundation for the economic and efficient development of tight oil in the Chang 7 Member of Heshui area,and has important implications on tight sandstone reservoirs in other regions of Ordos Basin in China.
基金This work was supported by PetroChina Major Science and Technology Project(No.2017E-015)PetroChina Key Project(No.kt2017-07).
文摘Tight oil in the redeposited carbonates was mainly distributed in the Lower Submember of Member 3 of Shahejie Formation in Shulu sag of Jizhong depression,North China.Through high-resolution 3D seismic data,well logging data and drilling data,the Lower Submember of Member 3 of Shahejie Formation was divided into 5 third-order sequences and 15 parasequence sets.The redeposited marl and rudstone were major reserving horizons of tight oil,and ten reserving space types were developed and could be classified into two main categories,i.e.,pores and fractures.Two types of tight oil reservoirs were established,i.e.,the marl hydrocarbon reservoir of the source-reservoir integration and the rudstone hydrocarbon reservoirs of the source-reservoir paragenesis.The assemblage relationship among the high-quality source rocks,system tracts with the source-reservoir configuration was the major control factor for tight oil accumulation in the redeposited carbonates.The lacustrine transgressive system tracts and highstand systems tracts in SQ1 to SQ5 were the favorable horizons for development of the marl hydrocarbon reservoir,the lowstand system tracts in SQ1 to SQ3 were the favorable horizons for development of the rudstone hydrocarbon reservoir.
文摘综合利用地球化学、扫描电镜、岩心薄片、测井等资料以及油井生产数据等,对鄂尔多斯盆地陕北地区三叠系延长组7段储层特征、烃源岩特征和致密油分布特征进行了分析,从烃源岩展布、输导体系和源-储组合关系3个方面对致密油差异富集控制因素进行了探讨,并总结了成藏模式。研究结果表明:(1)陕北地区长7段致密砂岩储层主要分布在一亚段(长71)和二亚段(长72),以灰色—灰白色长石砂岩和岩屑长石砂岩为主,长71和长72平均孔隙度分别为5.56%和7.32%,平均渗透率分别为0.097 m D和0.110 m D,长72储层物性更好;孔隙空间以溶孔为主,发育少量粒间孔。(2)研究区烃类主要来源于本地长72顶部和长73这2套烃源岩,平均厚度大于20 m,有机质丰度高,平均TOC值为3.02%,干酪根类型以Ⅰ型和Ⅱ1型为主,处于生烃高峰期,平均生烃量为270.2×10^(4)t/km^(2),长73烃源岩生烃潜力更大,供烃至长72储层,长71致密油来源于长72烃源岩;新安边地区三角洲前缘亚相末端的长72储层中致密油由湖盆烃源岩侧向供烃。(3)研究区致密油富集受烃源岩展布、砂体连通性以及源-储组合共同控制,在长72更富集,在新安边地区分布面积最大,安塞地区无大规模致密油聚集;纵向上和平面上致密油的聚集差异受控于烃源岩厚度和源-储组合关系,下生上储、上下生油而中间储集和砂泥互层时含油性更好;新安边地区三角洲前缘亚相末端的长72致密油聚集规模大于三角洲前缘主体,是由于三角洲前缘末端发育的局部连通砂体阻碍了湖盆烃类物质的侧向运移。(4)研究区致密油为“源控-砂控”成藏模式,远源河道优势砂体尖灭处和近源局部连通的砂体是有利勘探区。