The vacuum energy density of free scalar quantum field in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme sit...The vacuum energy density of free scalar quantum field in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background space-time with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the very same background distributional space-time such a Rindler distributional background space-time, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on a Rindler distributional space-times with distributional Levi-Cività connection. In particular we obtain that the vacuum fluctuations have a singular behavior at a Rindler horizon . Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski’s account doesn’t violate the Einstein equivalence principle.展开更多
A clear mathematical theory of time remains one of the most difficult challenges of science, which seems highly intriguing. In this work, we assume that time is the main independent attribute of nature and therefore m...A clear mathematical theory of time remains one of the most difficult challenges of science, which seems highly intriguing. In this work, we assume that time is the main independent attribute of nature and therefore may serve as the foundation of a comprehensive field theory. Furthermore, we assume that division algebras with the Euclidean norm are essential mathematical tools of time and the physical world in general. We use a four-dimensional normed division algebra of quaternions to describe time mathematically, as originally envisioned by Hamilton. We systematically define basic quaternion concepts related to time, such as the quaternion time interval, scalar measured time, the arrow of time, vector velocity, and quaternion frequency. We apply quaternion time concepts to the optical Doppler effect and demonstrate that our approach predicts known experimental results. Furthermore, we show that the quaternion solution of the Doppler effect enhances the relativity theory by resolving the notorious twin paradox. We identify quaternion frequency with the traditional concept of energy. We assume that quaternion energy, which is generally dependent on time and external interactions, can be used to describe dynamic properties of matter. In conclusion, we suggest that a state of matter can be represented by the eight-dimensional octonion configuration space, consisting of a quaternion time interval and a time dependent quaternion frequency. Therefore, it appears that the application of normed division algebras for the study of time and nature is highly logical, credible, and compelling.展开更多
This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with ...This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with that in the Reissner-Nordstroem (R-N) field, the correction terms caused by the spinning mass decrease the advanced effect as the revolution direction of the test particle coincides with that of the Kerr field, however, the correction terms caused by the spinning charged mass increase the advance effect as the revolution direction of the test particle coincides with that of the Kerr-Newman-Kasnya (KNK) field. Generalizing the effect in the axisymmetric field, it obtains interesting results by discussing the parameters of the celestial body, these parameters provide a feasible experimental verification of the general relativity.展开更多
文摘The vacuum energy density of free scalar quantum field in a Rindler distributional space-time with distributional Levi-Cività connection is considered. It has been widely believed that, except in very extreme situations, the influence of acceleration on quantum fields should amount to just small, sub-dominant contributions. Here we argue that this belief is wrong by showing that in a Rindler distributional background space-time with distributional Levi-Cività connection the vacuum energy of free quantum fields is forced, by the very same background distributional space-time such a Rindler distributional background space-time, to become dominant over any classical energy density component. This semiclassical gravity effect finds its roots in the singular behavior of quantum fields on a Rindler distributional space-times with distributional Levi-Cività connection. In particular we obtain that the vacuum fluctuations have a singular behavior at a Rindler horizon . Therefore sufficiently strongly accelerated observer burns up near the Rindler horizon. Thus Polchinski’s account doesn’t violate the Einstein equivalence principle.
文摘A clear mathematical theory of time remains one of the most difficult challenges of science, which seems highly intriguing. In this work, we assume that time is the main independent attribute of nature and therefore may serve as the foundation of a comprehensive field theory. Furthermore, we assume that division algebras with the Euclidean norm are essential mathematical tools of time and the physical world in general. We use a four-dimensional normed division algebra of quaternions to describe time mathematically, as originally envisioned by Hamilton. We systematically define basic quaternion concepts related to time, such as the quaternion time interval, scalar measured time, the arrow of time, vector velocity, and quaternion frequency. We apply quaternion time concepts to the optical Doppler effect and demonstrate that our approach predicts known experimental results. Furthermore, we show that the quaternion solution of the Doppler effect enhances the relativity theory by resolving the notorious twin paradox. We identify quaternion frequency with the traditional concept of energy. We assume that quaternion energy, which is generally dependent on time and external interactions, can be used to describe dynamic properties of matter. In conclusion, we suggest that a state of matter can be represented by the eight-dimensional octonion configuration space, consisting of a quaternion time interval and a time dependent quaternion frequency. Therefore, it appears that the application of normed division algebras for the study of time and nature is highly logical, credible, and compelling.
基金supported by the National Basic Research Program of China (Grant No 2003CB716300)Natural Science Foundation of Hunan Province, China (Grant No 06JJ20026)
文摘This paper uses an elegant mathematical method to calculate the orbital effects in the axisymmetric field created by the spinning mass with electric charge and a large number of magnetic monopoles. In comparison with that in the Reissner-Nordstroem (R-N) field, the correction terms caused by the spinning mass decrease the advanced effect as the revolution direction of the test particle coincides with that of the Kerr field, however, the correction terms caused by the spinning charged mass increase the advance effect as the revolution direction of the test particle coincides with that of the Kerr-Newman-Kasnya (KNK) field. Generalizing the effect in the axisymmetric field, it obtains interesting results by discussing the parameters of the celestial body, these parameters provide a feasible experimental verification of the general relativity.