In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entrop...In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entropy solution in the limit if Courant number is less than or equal to 1.展开更多
A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of ...A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.展开更多
基金Supported in part by the National Natural Science of China, NSF Grant No. DMS-8657319.
文摘In this paper, We show for isentropic equations of gas dynamics with adiabatic exponent gamma=3 that approximations of weak solutions generated by large time step Godunov's scheme or Glimm's scheme give entropy solution in the limit if Courant number is less than or equal to 1.
基金The Project Supported by National Natural Science Foundation of China.
文摘A natural generalization of random choice finite difference scheme of Harten and Lax for Courant number larger than 1 is obtained. We handle interactions between neighboring Riemann solvers by linear superposition of their conserved quantities. We show consistency of the scheme for arbitrarily large Courant numbers. For scalar problems the scheme is total variation diminishing.A brief discussion is given for entropy condition.