We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<sp...We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with a screened Kratzer-Hellmann potential which is constructed by the temporal counterpart of the spatial form of this potential. In addition, we got exact eigenvalues of the momentum and the eigenstates by solving Feinberg-Horodecki equation with Kratzer potential. The present work is illustrated with three special cases of the screened Kratzer-Hellman potential: the time-dependent screened Kratzer potential, time-dependent Hellmann potential and, the time-dependent screened Coulomb potential.展开更多
The photodetachment dynamics of H^- ion in a harmonic potential plus an oscillating electric field is studied using the time-dependent closed orbit theory. An analytical formula for calculating the photodetachment cro...The photodetachment dynamics of H^- ion in a harmonic potential plus an oscillating electric field is studied using the time-dependent closed orbit theory. An analytical formula for calculating the photodetachment cross section of this system is put forward. It is found that the photodetachment cross section of this system is nearly unaffected for the weak oscillating electric field strength, but oscillates complicatedly when the oscillating electric field strength turns strong. In addition, the frequency of the harmonic potential and the oscillating electric field (the frequency of the harmonic potential and the frequency of the oscillating electric field are the same in the paper, unless otherwise stated.) can also affect the photodetachment dynamics of this system. With the increase of the frequency in the harmonic potential and the oscillating electric field, the number of the closed orbits for the detached electrons increased, which makes the oscillatory structure in the photodetachment cross section much more complex. Our study presents an intuitive understanding of the photodetachment dynamics driven by a harmonic potential plus an oscillating electric field from a space and time dependent viewpoint. This study is very useful in guiding the future experimental research for the photodetachment dynamics in the electric field both changing with space and time.展开更多
In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation i...In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.展开更多
The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident e...The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident energy and the thickness of potential well satisfy certain conditions. Similar results are also found in a 2 dimensional fully relativistic optical analog. It is shown that the expression of the la teral shift of transmitted optical waves is similar to that of the phase time in the 1 dimensional quantum mechanical problem. The phase time in the 2 dimensional optical problem is also shown to be negative under certain conditions.展开更多
We obtain the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, and the momentum eigenstates for the space-like Schrodinger equation, the Feinberg-Horodecki equation, with the improved de...We obtain the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, and the momentum eigenstates for the space-like Schrodinger equation, the Feinberg-Horodecki equation, with the improved deformed exponential-type potential which is constructed by temporal counterpart of the spatial form of these potentials. We also plot the variations of the improved deformed exponential-type potential with its momentum eigenvalues for few quantized states against the screening parameter.展开更多
It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material ...It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material and is free/available to do work at some later time. However, it will be shown in this paper that while in this state of higher Gibbs potential, the material is metastable and the material will degrade spontaneously/naturally with time in an effort to reach a lower Gibbs Potential. A generalized Gibbs Potential Model is developed herein to better understand its impact on a materials degradation rate. Special attention will be given to dielectrics degradation.展开更多
We obtain the quantized momentum eigenvalues, <i><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"></span></i><...We obtain the quantized momentum eigenvalues, <i><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"></span></i><i><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;"></span></i>, and the momentum eigenstates for the space-like Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with the general potential which is constructed by the temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: time-dependent Wei-Hua Oscillator and time-dependent Manning-Rosen potential. We also plot the variations of the general molecular potential with its two special cases and their momentum states for few quantized states against the screening parameter.展开更多
A time dependent quantum wave packet method was used to study the dynamics of dissociative adsorption of H 2 and D 2 on a flat and static surface. The molecule surface interaction is described using a modified London ...A time dependent quantum wave packet method was used to study the dynamics of dissociative adsorption of H 2 and D 2 on a flat and static surface. The molecule surface interaction is described using a modified London Eyring Polanyi Sato (LEPS) type potential for the H 2/Ni(100) system. The three dimensional (3 D) dissociation probabilities were calculated for different initial rovibrational states as a function of initial incident energies. Our results show that the dissociation of the diatomic rotational states whose quantum numbers satisfy j+m =odd is forbidden at low energies for the homonuclear H 2 and D 2 due to the selection rule. The effect of the rotational orientation of diatoms on adsorption predicts that the in plane rotation (m=j) is more favorable for dissociation than the out of plane rotation (m=0) . Enhanced dissociation for vibrationally excited molecules and the significant enhancement of the dissociation probability of H 2 when compared to D 2 were explained reasonably in terms of quantum mechanical zero point energies, the tunneling effect and the reflection from an activation barrier.展开更多
This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of...This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of constant electric potential in time ε and the curve of the discharge process through two fixed resistors. The first resistor R<sub>Co</sub> is a control that aims to prevent sudden variations in the intensity of the electric current i<sub>1</sub>(t) present at the terminals of the electrochemical supercapacitor at the beginning of the charging process. The second resistor is the internal resistance R<sub>A</sub> of the ammeter used in the calculation of the intensity of the electric current i<sub>1</sub>(t) over time in the charging and discharging processes. The mathematical equations generated were based on a 2R(C + kU<sub>C</sub>(t)) electrical circuit model and allowed to simulate the effects of the potential-dependent capacitance (kU<sub>C</sub>(t)) on the charge and discharge curves and hence on the calculated values of the fixed capacitance C, the equivalent series resistance (ESR), the equivalent parallel resistance (EPR) and the electrical potential dependent capacitance index k.展开更多
Electron localization in the dissociation of the symmetric linear molecular ion H3-(2+) is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central freque...Electron localization in the dissociation of the symmetric linear molecular ion H3-(2+) is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central frequency and peak electric field amplitude of the external ultrashort ultraviolet laser pulse. When the electrons of the ground state are excited onto the 2pσ-2Σu-+ by a one-photon process, most electrons of the dissociation states are localized at the protons on both sides symmetrically. Almost no electron is stabilized at the middle proton due to the odd symmetry of the wave function. With the increase of the frequency of the external ultraviolet laser pulse, the electron localization ratio of the middle proton increases, for more electrons of the ground state are excited onto the higher 3pσ-2Σu-+ ustate. 50.9% electrons of all the dissociation events can be captured by the middle Coulomb potential well through optimizing the central frequency and peak electric field amplitude of the ultraviolet laser pulse. Besides, a direct current(DC) electric field can be utilized to control the electron motions of the dissociation states after the excitation of an ultraviolet laser pulse, and 68.8% electrons of the dissociation states can be controlled into the middle proton.展开更多
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
文摘We obtain an approximate value of the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, together with the space-like coherent eigenvectors for the space-like counterpart of the Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with a screened Kratzer-Hellmann potential which is constructed by the temporal counterpart of the spatial form of this potential. In addition, we got exact eigenvalues of the momentum and the eigenstates by solving Feinberg-Horodecki equation with Kratzer potential. The present work is illustrated with three special cases of the screened Kratzer-Hellman potential: the time-dependent screened Kratzer potential, time-dependent Hellmann potential and, the time-dependent screened Coulomb potential.
基金supported by the National Natural Science Foundation of China(Grant No.11374133)the Taishan Scholars Project of Shandong Province,China(Grant No.ts2015110055)
文摘The photodetachment dynamics of H^- ion in a harmonic potential plus an oscillating electric field is studied using the time-dependent closed orbit theory. An analytical formula for calculating the photodetachment cross section of this system is put forward. It is found that the photodetachment cross section of this system is nearly unaffected for the weak oscillating electric field strength, but oscillates complicatedly when the oscillating electric field strength turns strong. In addition, the frequency of the harmonic potential and the oscillating electric field (the frequency of the harmonic potential and the frequency of the oscillating electric field are the same in the paper, unless otherwise stated.) can also affect the photodetachment dynamics of this system. With the increase of the frequency in the harmonic potential and the oscillating electric field, the number of the closed orbits for the detached electrons increased, which makes the oscillatory structure in the photodetachment cross section much more complex. Our study presents an intuitive understanding of the photodetachment dynamics driven by a harmonic potential plus an oscillating electric field from a space and time dependent viewpoint. This study is very useful in guiding the future experimental research for the photodetachment dynamics in the electric field both changing with space and time.
文摘In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.
基金Supported by the National Natural Science Foundation of China!( 6 9870 0 9)by the Science Foundation of Shanghai Municipal
文摘The properties of phase time taken for particles to pass through a quantum potential well are investigated. It is found in a 1 dimensional quantum mechanical problem that the phase time is negative when the incident energy and the thickness of potential well satisfy certain conditions. Similar results are also found in a 2 dimensional fully relativistic optical analog. It is shown that the expression of the la teral shift of transmitted optical waves is similar to that of the phase time in the 1 dimensional quantum mechanical problem. The phase time in the 2 dimensional optical problem is also shown to be negative under certain conditions.
文摘We obtain the quantized momentum eigenvalues, <em>P<sub>n</sub></em>, and the momentum eigenstates for the space-like Schrodinger equation, the Feinberg-Horodecki equation, with the improved deformed exponential-type potential which is constructed by temporal counterpart of the spatial form of these potentials. We also plot the variations of the improved deformed exponential-type potential with its momentum eigenvalues for few quantized states against the screening parameter.
文摘It is well known that work done on a material by conservative forces (electrical, mechanical, chemical) will increase the Gibbs Potential of the material. The increase in Gibbs Potential can be stored in the material and is free/available to do work at some later time. However, it will be shown in this paper that while in this state of higher Gibbs potential, the material is metastable and the material will degrade spontaneously/naturally with time in an effort to reach a lower Gibbs Potential. A generalized Gibbs Potential Model is developed herein to better understand its impact on a materials degradation rate. Special attention will be given to dielectrics degradation.
文摘We obtain the quantized momentum eigenvalues, <i><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"></span></i><i><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;"></span></i>, and the momentum eigenstates for the space-like Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with the general potential which is constructed by the temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: time-dependent Wei-Hua Oscillator and time-dependent Manning-Rosen potential. We also plot the variations of the general molecular potential with its two special cases and their momentum states for few quantized states against the screening parameter.
文摘A time dependent quantum wave packet method was used to study the dynamics of dissociative adsorption of H 2 and D 2 on a flat and static surface. The molecule surface interaction is described using a modified London Eyring Polanyi Sato (LEPS) type potential for the H 2/Ni(100) system. The three dimensional (3 D) dissociation probabilities were calculated for different initial rovibrational states as a function of initial incident energies. Our results show that the dissociation of the diatomic rotational states whose quantum numbers satisfy j+m =odd is forbidden at low energies for the homonuclear H 2 and D 2 due to the selection rule. The effect of the rotational orientation of diatoms on adsorption predicts that the in plane rotation (m=j) is more favorable for dissociation than the out of plane rotation (m=0) . Enhanced dissociation for vibrationally excited molecules and the significant enhancement of the dissociation probability of H 2 when compared to D 2 were explained reasonably in terms of quantum mechanical zero point energies, the tunneling effect and the reflection from an activation barrier.
文摘This study presents the deduction of time domain mathematical equations to simulate the curve of the charging process of a symmetrical electrochemical supercapacitor with activated carbon electrodes fed by a source of constant electric potential in time ε and the curve of the discharge process through two fixed resistors. The first resistor R<sub>Co</sub> is a control that aims to prevent sudden variations in the intensity of the electric current i<sub>1</sub>(t) present at the terminals of the electrochemical supercapacitor at the beginning of the charging process. The second resistor is the internal resistance R<sub>A</sub> of the ammeter used in the calculation of the intensity of the electric current i<sub>1</sub>(t) over time in the charging and discharging processes. The mathematical equations generated were based on a 2R(C + kU<sub>C</sub>(t)) electrical circuit model and allowed to simulate the effects of the potential-dependent capacitance (kU<sub>C</sub>(t)) on the charge and discharge curves and hence on the calculated values of the fixed capacitance C, the equivalent series resistance (ESR), the equivalent parallel resistance (EPR) and the electrical potential dependent capacitance index k.
基金supported by the National Natural Science Foundation of China(Grant Nos.11127901,61521093,11134010,11227902,11222439,and 11274325)the National Basic Research Program of China(Grant No.2011CB808103)
文摘Electron localization in the dissociation of the symmetric linear molecular ion H3-(2+) is investigated. The numerical simulation shows that the electron localization distribution is dependent on the central frequency and peak electric field amplitude of the external ultrashort ultraviolet laser pulse. When the electrons of the ground state are excited onto the 2pσ-2Σu-+ by a one-photon process, most electrons of the dissociation states are localized at the protons on both sides symmetrically. Almost no electron is stabilized at the middle proton due to the odd symmetry of the wave function. With the increase of the frequency of the external ultraviolet laser pulse, the electron localization ratio of the middle proton increases, for more electrons of the ground state are excited onto the higher 3pσ-2Σu-+ ustate. 50.9% electrons of all the dissociation events can be captured by the middle Coulomb potential well through optimizing the central frequency and peak electric field amplitude of the ultraviolet laser pulse. Besides, a direct current(DC) electric field can be utilized to control the electron motions of the dissociation states after the excitation of an ultraviolet laser pulse, and 68.8% electrons of the dissociation states can be controlled into the middle proton.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.