期刊文献+
共找到649篇文章
< 1 2 33 >
每页显示 20 50 100
Identification and classification of transient pulses observed in magnetometer array data by time-domain principal component analysis filtering
1
作者 Karl N. Kappler Daniel D. Schneider +1 位作者 Laura S. MacLean Thomas E. Bleier 《Earthquake Science》 CSCD 2017年第4期193-207,共15页
A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of inter... A method for identification of pulsations in time series of magnetic field data which are simultaneously present in multiple channels of data at one or more sensor locations is described. Candidate pulsations of interest are first identified in geomagnetic time series by inspection. Time series of these "training events" are represented in matrix form and transpose-multiplied to generate time- domain covariance matrices. The ranked eigenvectors of this matrix are stored as a feature of the pulsation. In the second stage of the algorithm, a sliding window (approxi- mately the width of the training event) is moved across the vector-valued time-series comprising the channels on which the training event was observed. At each window position, the data covariance matrix and associated eigen- vectors are calculated. We compare the orientation of the dominant eigenvectors of the training data to those from the windowed data and flag windows where the dominant eigenvectors directions are similar. This was successful in automatically identifying pulses which share polarization and appear to be from the same source process. We apply the method to a case study of continuously sampled (50 Hz) data from six observatories, each equipped with three- component induction coil magnetometers. We examine a 90-day interval of data associated with a cluster of four observatories located within 50 km of Napa, California, together with two remote reference stations-one 100 km to the north of the cluster and the other 350 km south. When the training data contains signals present in the remote reference observatories, we are reliably able to identify and extract global geomagnetic signals such as solar-generated noise. When training data contains pulsations only observed in the cluster of local observatories, we identify several types of non-plane wave signals having similar polarization. 展开更多
关键词 time series Magnetic fields Array data Signal processing principal component analysis
下载PDF
Short-Term Financial Time Series Forecasting Integrating Principal Component Analysis and Independent Component Analysis with Support Vector Regression
2
作者 Utpala Nanda Chowdhury Sanjoy Kumar Chakravarty Md. Tanvir Hossain 《Journal of Computer and Communications》 2018年第3期51-67,共17页
Financial time series forecasting could be beneficial for individual as well as institutional investors. But, the high noise and complexity residing in the financial data make this job extremely challenging. Over the ... Financial time series forecasting could be beneficial for individual as well as institutional investors. But, the high noise and complexity residing in the financial data make this job extremely challenging. Over the years, many researchers have used support vector regression (SVR) quite successfully to conquer this challenge. In this paper, an SVR based forecasting model is proposed which first uses the principal component analysis (PCA) to extract the low-dimensional and efficient feature information, and then uses the independent component analysis (ICA) to preprocess the extracted features to nullify the influence of noise in the features. Experiments were carried out based on 16 years’ historical data of three prominent stocks from three different sectors listed in Dhaka Stock Exchange (DSE), Bangladesh. The predictions were made for 1 to 4 days in advance targeting the short term prediction. For comparison, the integration of PCA with SVR (PCA-SVR), ICA with SVR (ICA-SVR) and single SVR approaches were applied to evaluate the prediction accuracy of the proposed approach. Experimental results show that the proposed model (PCA-ICA-SVR) outperforms the PCA-SVR, ICA-SVR and single SVR methods. 展开更多
关键词 FINANCIAL time Series Forecasting Support Vector Regression principal component analysis Independent component analysis Dhaka STOCK Exchange
下载PDF
Remaining Useful Life Prediction of Aeroengine Based on Principal Component Analysis and One-Dimensional Convolutional Neural Network 被引量:4
3
作者 LYU Defeng HU Yuwen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期867-875,共9页
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based... In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness. 展开更多
关键词 AEROENGINE remaining useful life(RUL) principal component analysis(PCA) one-dimensional convolution neural network(1D-CNN) time series prediction state parameters
下载PDF
Computational Intelligence Prediction Model Integrating Empirical Mode Decomposition,Principal Component Analysis,and Weighted k-Nearest Neighbor 被引量:2
4
作者 Li Tang He-Ping Pan Yi-Yong Yao 《Journal of Electronic Science and Technology》 CAS CSCD 2020年第4期341-349,共9页
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat... On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate. 展开更多
关键词 Empirical mode decomposition(EMD) k-nearest neighbor(KNN) principal component analysis(PCA) time series
下载PDF
Feature Extraction of Fabric Defects Based on Complex Contourlet Transform and Principal Component Analysis 被引量:1
5
作者 吴一全 万红 叶志龙 《Journal of Donghua University(English Edition)》 EI CAS 2013年第4期282-286,共5页
To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PC... To extract features of fabric defects effectively and reduce dimension of feature space,a feature extraction method of fabric defects based on complex contourlet transform (CCT) and principal component analysis (PCA) is proposed.Firstly,training samples of fabric defect images are decomposed by CCT.Secondly,PCA is applied in the obtained low-frequency component and part of highfrequency components to get a lower dimensional feature space.Finally,components of testing samples obtained by CCT are projected onto the feature space where different types of fabric defects are distinguished by the minimum Euclidean distance method.A large number of experimental results show that,compared with PCA,the method combining wavdet low-frequency component with PCA (WLPCA),the method combining contourlet transform with PCA (CPCA),and the method combining wavelet low-frequency and highfrequency components with PCA (WPCA),the proposed method can extract features of common fabric defect types effectively.The recognition rate is greatly improved while the dimension is reduced. 展开更多
关键词 fabric defects feature extraction complex contourlet transform(CCT) principal component analysis(PCA)CLC number:TP391.4 TS103.7Document code:AArticle ID:1672-5220(2013)04-0282-05
下载PDF
Multivariate time delay analysis based local KPCA fault prognosis approach for nonlinear processes 被引量:5
6
作者 Yuan Xu Ying Liu Qunxiong Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第10期1413-1422,共10页
Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To... Currently, some fault prognosis technology occasionally has relatively unsatisfied performance especially for in- cipient faults in nonlinear processes duo to their large time delay and complex internal connection. To overcome this deficiency, multivariate time delay analysis is incorporated into the high sensitive local kernel principal component analysis. In this approach, mutual information estimation and Bayesian information criterion (BIC) are separately used to acquire the correlation degree and time delay of the process variables. Moreover, in order to achieve prediction, time series prediction by back propagation (BP) network is applied whose input is multivar- iate correlated time series other than the original time series. Then the multivariate time delayed series and future values obtained by time series prediction are combined to construct the input of local kernel principal component analysis (LKPCA) model for incipient fault prognosis. The new method has been exemplified in a sim- ple nonlinear process and the complicated Tennessee Eastman (TE) benchmark process. The results indicate that the new method has suoerioritv in the fault prognosis sensitivity over other traditional fault prognosis methods. 展开更多
关键词 Fault prognosis time delay estimation Local kernel principal component analysis
下载PDF
Principal component cluster analysis of ECG time series based on Lyapunov exponent spectrum 被引量:4
7
作者 WANGNai RUANJiong 《Chinese Science Bulletin》 SCIE EI CAS 2004年第18期1980-1985,共6页
In this paper we propose an approach of prin-cipal component cluster analysis based on Lyapunov expo-nent spectrum (LES) to analyze the ECG time series. Analy-sis results of 22 sample-files of ECG from the MIT-BIH da-... In this paper we propose an approach of prin-cipal component cluster analysis based on Lyapunov expo-nent spectrum (LES) to analyze the ECG time series. Analy-sis results of 22 sample-files of ECG from the MIT-BIH da-tabase confirmed the validity of our approach. Another technique named improved teacher selecting student (TSS) algorithm is presented to analyze unknown samples by means of some known ones, which is of better accuracy. This technique combines the advantages of both statistical and nonlinear dynamical methods and is shown to be significant to the analysis of nonlinear ECG time series. 展开更多
关键词 ECG 非线性时间级数分析 李雅普诺夫指数光谱 TSS算法 主要成份聚合分析
原文传递
Multi-response optimization of Ti-6A1-4V turning operations using Taguchi-based grey relational analysis coupled with kernel principal component analysis
8
作者 Ning Li Yong-Jie Chen Dong-Dong Kong 《Advances in Manufacturing》 SCIE CAS CSCD 2019年第2期142-154,共13页
Ti-6A1-4V has a wide range of applications, especially in the aerospace field;however, it is a difficultto- cut material. In order to achieve sustainable machining of Ti?6A1-4V, multiple objectives considering not onl... Ti-6A1-4V has a wide range of applications, especially in the aerospace field;however, it is a difficultto- cut material. In order to achieve sustainable machining of Ti?6A1-4V, multiple objectives considering not only economic and technical requirements but also the environmental requirement need to be optimized simultaneously. In this work, the optimization design of process parameters such as type of inserts, feed rate, and depth of cut for Ti-6A1-4V turning under dry condition was investigated experimentally. The major performance indexes chosen to evaluate this sustainable process were radial thrust, cutting power, and coefficient of friction at the toolchip interface. Considering the nonlinearity between the various objectives, grey relational analysis (GRA) was first performed to transform these indexes into the corresponding grey relational coefficients, and then kernel principal component analysis (KPCA) was applied to extract the kernel principal components and determine the corresponding weights which showed their relative importance. Eventually, kernel grey relational grade (KGRG) was proposed as the optimization criterion to identify the optimal combination of process parameters. The results of the range analysis show that the depth of cut has the most significant effect, followed by the feed rate and type of inserts. Confirmation tests clearly show that the modified method combining GRA with KPCA outperforms the traditional GRA method with equal weights and the hybrid method based on GRA and PCA. 展开更多
关键词 TI-6A1-4V Taguchi method Grey relational analysis (GRA) Kernel principal component analysis (KPCA) Multi-response OPTIMIZATION
原文传递
基于UPLC-Q-TOF-MS分析江西特色炮制技术对中药升麻化学成分的影响
9
作者 祝婧 袁恩 +2 位作者 吴乙庚 易炳学 陈泣 《中国中医基础医学杂志》 CAS CSCD 2024年第11期1935-1941,共7页
目的比较江西特色炮制技术对升麻化学成分的影响,筛选优质饮片品种。方法采用超高效液相色谱-四极杆-飞行时间串联质谱(ultra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry,UPLC-Q-TOF-MS)技... 目的比较江西特色炮制技术对升麻化学成分的影响,筛选优质饮片品种。方法采用超高效液相色谱-四极杆-飞行时间串联质谱(ultra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry,UPLC-Q-TOF-MS)技术,在正、负离子模式下分析升麻不同炮制品的化学成分,通过对照品、相对分子质量、质谱裂解规律和文献信息进行鉴定。利用SIMCA-P13.0软件建立升麻各炮制品主成分分析(principal component analysis,PCA)和偏最小二乘法-判别分析(partial least squares discriminant analysis,PLS-DA)模型,获取PCA得分图、PLA-DA得分图和变量重要性投影(variable importance plot,VIP)值,筛选造成升麻炮制前后主要差异的物质基础。利用MetaboAnatyst网页绘图工具,制作得到热图,可更直观地观察升麻化学成分经炮制后的变化趋势。结果鉴定出71个化学成分,PCA显示经不同方法炮制后升麻组间差异性大,PLS-DA筛选出VIP值>1的33个化学成分作为炮制前后差异性的主要化学标记物。其中生品和蜜炙升麻中三萜类含量较高,蜜麸、蜜糠炒升麻中酚酸类物质含量较高,蜜麸升麻中阿魏酸含量较高。结论酚酸类和三萜皂苷类是区分升麻不同炮制品最重要的化合物类别,为江西特色升麻饮片的药效物质基础及优势品种研究提供了依据。 展开更多
关键词 升麻 炮制 化学成分 超高效液相色谱-四极杆-飞行时间串联质谱 主成分分析 偏最小二乘法-判别分析 热图
下载PDF
基于PCA-ShapeDTW-QWGRU的分布式光伏集群短期功率预测
10
作者 欧阳静 秦龙 +3 位作者 王坚锋 尹康 褚礼东 潘国兵 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期458-467,共10页
针对分布式光伏短期功率预测建立基于主成分分析、改进的动态时间规整算法与量子加权门控循环单元(PCAShapeDTW-QWGRU)的集群功率预测模型。针对集群划分不够精细、光伏电站数据蕴含的信息难以捕捉的问题,提出基于主成分分析结合密度聚... 针对分布式光伏短期功率预测建立基于主成分分析、改进的动态时间规整算法与量子加权门控循环单元(PCAShapeDTW-QWGRU)的集群功率预测模型。针对集群划分不够精细、光伏电站数据蕴含的信息难以捕捉的问题,提出基于主成分分析结合密度聚类算法(PCA-OPTICS)的集群划分方法;针对目前选取代表电站与集群相似性较低的问题,提出基于改进的动态时间规整算法(ShapeDTW)的代表电站的选取方法,利用ShapeDTW度量相似性距离,选取最小值作为代表电站,并利用基于均方根传播梯度下降法优化的量子加权门控循环单元(RMSprop-QWGRU)模型进行预测;为了解决代表电站与集群功率的变换系数转换差异较大的问题,采用实时变换系数对代表电站进行集群功率值预测计算。实验结果表明,所提方法能有效提升光伏集群功率预测的精度。 展开更多
关键词 光伏功率预测 集群划分 主成分分析 动态时间规整 量子加权门控循环单元
下载PDF
Population Spatial Distribution Based on Luojia 1-01 Nighttime Light Image:A Case Study of Beijing 被引量:1
11
作者 SUN Lu WANG Jia CHANG Shuping 《Chinese Geographical Science》 SCIE CSCD 2021年第6期966-978,共13页
With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,... With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,the quantity and agglomeration of population distribution can be estimated and visualized.It will provide a basis for a more rational urban planning.This paper takes Beijing as the research area and uses a new Luojia1-01 nighttime light image with high resolution,land use type data,Points of Interest(POI)data,and other data to construct the population spatial index system,establishing the index weight based on the principal component analysis.The comprehensive weight value of population distribution in the study area was then used to calculate the street population distribution of Beijing in 2018.Then the population spatial distribution was visualize using GIS technology.After accuracy assessments by comparing the result with the WorldPop data,the accuracy has reached 0.74.The proposed method was validated as a qualified method to generate population spatial maps.By contrast of local areas,Luojia 1-01 data is more suitable for population distribution estimation than the NPP/VIIRS(Net Primary Productivity/Visible infrared Imaging Radiometer)nighttime light data.More geospatial big data and mathematical models can be combined to create more accurate population maps in the future. 展开更多
关键词 Luojia1-01 nighttime light image principal component analysis points of interest landuse type data population spatial distribution
下载PDF
The Regression Analysis between the Meteorological Synthetic Index Sequence and PM2.5 Concentration
12
作者 Weijuan Liang Zhaogan Zhang +4 位作者 Jing Gao Wanyu Li Xiaofan Liu Liyuan Bai Yufeng Gui 《Applied Mathematics》 2015年第11期1913-1917,共5页
Adapting daily meteorological data provided by China International Exchange Station, and using principal component analysis of meteorological index for dimension reduction comprehensive, the regression analysis model ... Adapting daily meteorological data provided by China International Exchange Station, and using principal component analysis of meteorological index for dimension reduction comprehensive, the regression analysis model between PM2.5 and comprehensive index is established, by making use of Eviews time series modeling of the comprehensive principal component, finally puts forward opinions and suggestions aim at the regression analysis results of using artificial rainfall to ease haze. 展开更多
关键词 METEOROLOGICAL INDEX principal component analysis time Series Modeling PM2.5 HAZE
下载PDF
边坡安全监测GPS-RTK信号的降噪算法研究
13
作者 董是 龙志友 +4 位作者 王建伟 邵永军 杨超 左琛 马少华 《振动与冲击》 EI CSCD 北大核心 2024年第3期265-275,共11页
全球定位系统实时动态差分技术(global positioning system-real time kinematic, GPS-RTK)是解决路基边坡安全监测问题的重要手段,但GPS-RTK信号易受到多路径误差和共模误差的影响。基于小波变换(wavelet transform, WT)和主成分分析(p... 全球定位系统实时动态差分技术(global positioning system-real time kinematic, GPS-RTK)是解决路基边坡安全监测问题的重要手段,但GPS-RTK信号易受到多路径误差和共模误差的影响。基于小波变换(wavelet transform, WT)和主成分分析(principal component analysis, PCA)分别可以有效去除多路径误差和共模误差,提出WT-PCA算法去除信号误差。首先设置仿真信号,通过参数调优进一步提高单一算法的降噪效果。其次提出组合算法WT-PCA改进单一算法的缺陷,并与其他组合算法进行对比分析。最后,对十天高速路基边坡的GPS-RTK监测数据进行实例分析。结果表明,WT-PCA算法的信噪比和均方根误差较于WT-VMD优于66%和50%左右,算法可以有效地消除GPS-RTK信号的多路径误差和共模误差影响。提高边坡位移监测信号处理精度,进一步评估边坡结构形变及安全状态。 展开更多
关键词 信号降噪 全球定位系统实时动态差分技术(GPS-RTK) 主成分分析(PCA)噪声压缩 组合算法降噪
下载PDF
Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis
14
作者 QIAN Tao ZHANG Li-ming 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第4期505-530,共26页
We present recent work of harmonic and signal analysis based on the complex Hardy space approach.
关键词 Mobius transform Blaschke form mono-component Hardy space adaptive Fourier decomposi-tion rational approximation rational orthogonal system time-frequency distribution digital signal processing uncertainty principle higher dimensional signal analysis in several complex variables and the Clifford algebrasetting.
下载PDF
基于相似日选取和PCA-LSTM的光伏出力组合预测模型研究
15
作者 孟亦康 许野 +2 位作者 王鑫鹏 王涛 李薇 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期453-461,共9页
构建一套融合主成分分析方法(PCA)、改进的K-均值聚类方法、动态时间规整算法(DTW)和长短期记忆神经网络(LSTM)的光伏出力组合预测模型。在运用PCA法提取气象要素的主成分因子的基础上,创新性地联合使用改进的K-均值聚类方法和DTW算法... 构建一套融合主成分分析方法(PCA)、改进的K-均值聚类方法、动态时间规整算法(DTW)和长短期记忆神经网络(LSTM)的光伏出力组合预测模型。在运用PCA法提取气象要素的主成分因子的基础上,创新性地联合使用改进的K-均值聚类方法和DTW算法生成内部关联程度高且与待预测日的天气特征相近的历史日样本集;然后,结合LSTM神经网络,构建基于相似日选取的光伏发电功率预测模型,最终实现了云南某光伏电站发电功率的精准预测。与其他预测模型的对比结果显示,该文构建的组合预测模型具备更好的预测性能和广阔的应用前景。 展开更多
关键词 光伏电站 主成分分析 长短期记忆神经网络 预测模型 改进的K-均值聚类方法 动态时间规整算法
下载PDF
基于超高效液相色谱-四极杆-飞行时间串联质谱技术分析不同乳酸菌发酵桑叶化学成分的变化
16
作者 修慧迪 梁光月 程磊 《食品科学》 EI CAS CSCD 北大核心 2024年第21期236-244,共9页
比较不同乳酸菌发酵工艺对桑叶化学成分的影响,筛选优势菌种。采用超高效液相色谱-四极杆-飞行时间串联质谱检测桑叶中的化学成分,通过对照品、分子质量、质谱裂解规律和文献信息鉴定桑叶甲醇提取液的化学成分。利用SIMCA 14.1软件建立... 比较不同乳酸菌发酵工艺对桑叶化学成分的影响,筛选优势菌种。采用超高效液相色谱-四极杆-飞行时间串联质谱检测桑叶中的化学成分,通过对照品、分子质量、质谱裂解规律和文献信息鉴定桑叶甲醇提取液的化学成分。利用SIMCA 14.1软件建立桑叶各发酵品的主成分分析(principal component analysis,PCA)模型和偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA)模型,获取PCA得分图、PLS-DA载荷图和变量投影重要性(variable importance in projection,VIP)值,筛选桑叶发酵前后的差异物质。本实验鉴定出了41个化学成分,PCA结果提示经不同发酵工艺发酵后的桑叶组间差异性较大,PLS-DA筛选出VIP值>1的11个化学成分,可作为发酵前后差异性的化学标记物,分别为大波斯菊苷、异鼠李素-3-O-新橙皮苷、金丝桃苷、3,4-二咖啡酰奎宁酸、橙黄决明素、水杨酸、染料木苷、矢车菊素-3-O-葡萄糖苷、鸟苷、异麦角甾苷、毛蕊花糖苷;将其综合加权评分后发现鼠李糖乳杆菌发酵桑叶中有效成分含量最高。桑叶发酵前后化学成分含量发生显著变化,黄酮类成分是区分桑叶不同发酵品最重要的化合物类别,鼠李糖乳杆菌为桑叶的优势发酵菌种。 展开更多
关键词 桑叶 发酵 超高效液相色谱-四极杆-飞行时间串联质谱 主成分分析 偏最小二乘判别分析
下载PDF
基于主成分-时间序列模型的地下水位预测 被引量:30
17
作者 张展羽 梁振华 +2 位作者 冯宝平 黄继文 吴东 《水科学进展》 EI CAS CSCD 北大核心 2017年第3期415-420,共6页
地下水位预测是区域水资源管理的重要依据。针对地下水位在时间序列上表现出高度的随机性和滞后性,建立了基于主成分分析与多变量时间序列CAR(Controlled Auto-Regressive)模型耦合的地下水位预报模型,将该模型应用于济南市陡沟灌区地... 地下水位预测是区域水资源管理的重要依据。针对地下水位在时间序列上表现出高度的随机性和滞后性,建立了基于主成分分析与多变量时间序列CAR(Controlled Auto-Regressive)模型耦合的地下水位预报模型,将该模型应用于济南市陡沟灌区地下水位预测,结果显示,模型模拟值与实测值的决定系数R^2和Nash-Suttcliffe系数Ens均达到0.90以上;以2011年为基准年,当降水量减少10%~20%,蒸发量和生活用水量增加10%~20%,调入27.39万~137.0万m^3地表水用于农业灌溉时,到2030年灌区地下水位将维持在30.99~31.29 m,较基准年上升0.12~0.42 m。在区域水资源紧缺的背景下,适当引入地表水灌溉,减少地下水的开采,灌区地下水位将逐步回升,对于灌区的可持续发展和区域水资源的合理利用具有重要意义。 展开更多
关键词 地下水位 主成分分析 多变量时间序列 预测
下载PDF
履带机器人基于时频特征与PCA-SVM的地面分类研究 被引量:5
18
作者 杜习波 朱华 《河南理工大学学报(自然科学版)》 CAS 北大核心 2019年第2期84-90,共7页
为了提高履带机器人对地面分类的准确率,提出一种基于时频特征和PCA-SVM的地面分类方法。对振动信号采用时域幅值和现代功率谱分析同时进行时频特征提取,并运用主成分分析法(PCA)进行时频特征的融合和简化,然后利用LIBSVM中的一对一支... 为了提高履带机器人对地面分类的准确率,提出一种基于时频特征和PCA-SVM的地面分类方法。对振动信号采用时域幅值和现代功率谱分析同时进行时频特征提取,并运用主成分分析法(PCA)进行时频特征的融合和简化,然后利用LIBSVM中的一对一支持向量机(SVM)程序,实现地面识别分类。控制履带机器人以2种速度在5种不同的地面上行驶,利用其上安装的惯性导航传感器采集3个方向直线加速度和三轴的角速度信号,采用本文算法和单一特征分类算法对信号分别进行时频特征处理与地面分类试验。结果表明,本文算法在机器人速度0. 02m/s时可得到更好的分类效果。该方法可为履带机器人实现更有效的地面环境感知和自身在最佳状态下的导航控制运行提供技术支持。 展开更多
关键词 履带机器人 地面分类 时频特征 主成分分析法 支持向量机
下载PDF
伪魏格纳-维勒分布在地磁时频分析中的应用 被引量:7
19
作者 何康 晏锐 +2 位作者 郑海刚 李军辉 方震 《中国地震》 北大核心 2013年第1期157-167,共11页
采用伪魏格纳-维勒分布对静日和扰日的地磁场Z分量数据进行时频分析,结果表明周期为6~24h的静日变化在静日和扰日的各个台站都存在;而2~6h部分既受外源场影响,也反映了区域信息,表现出感应磁场和地壳磁场的特征。采用平滑伪魏格纳-维... 采用伪魏格纳-维勒分布对静日和扰日的地磁场Z分量数据进行时频分析,结果表明周期为6~24h的静日变化在静日和扰日的各个台站都存在;而2~6h部分既受外源场影响,也反映了区域信息,表现出感应磁场和地壳磁场的特征。采用平滑伪魏格纳-维勒分布对汶川8.0级地震前各台的Z分量数据进行时频分析,结果显示震中附近的地磁台站在震前记录到了周期约为4.4h的异常信号,其振幅随震中距增大而减小。 展开更多
关键词 地磁Z分量 伪魏格纳-维勒分布 时频分析 汶川8 0级地震
下载PDF
基于k-近邻的多元时间序列局部异常检测 被引量:5
20
作者 郭小芳 李锋 王卫东 《江苏科技大学学报(自然科学版)》 CAS 2012年第5期505-508,513,共5页
为了提高多元时间序列异常检测算法的效率,在k-近邻局部异常检测算法的基础上,采用基于主成分分析的多元时间序列的降维方法,按照累积贡献率选择主成分序列,利用局部异常检测方法对多元时间序列进行异常检测.为验证了算法的有效性和合理... 为了提高多元时间序列异常检测算法的效率,在k-近邻局部异常检测算法的基础上,采用基于主成分分析的多元时间序列的降维方法,按照累积贡献率选择主成分序列,利用局部异常检测方法对多元时间序列进行异常检测.为验证了算法的有效性和合理性,对股票数据进行了异常检测实验,实验结果表明该算法提高了多元时间序列异常检测的准确性. 展开更多
关键词 多元时间序列 主成分分析 K-近邻 异常检测
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部