A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploratio...A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation.展开更多
We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third ord...We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.展开更多
The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this ...The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.展开更多
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit...In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.展开更多
The existence, uniqueness and regularity of solutions to the Cauchy problem posed for a nonhomogeneous viscous Burger's equation were shown in Chung, Kim and Slemrod [1] by assuming suitable conditions on initial ...The existence, uniqueness and regularity of solutions to the Cauchy problem posed for a nonhomogeneous viscous Burger's equation were shown in Chung, Kim and Slemrod [1] by assuming suitable conditions on initial data. Moreover, they derived the asymptotic behaviour of solutions of the Cauchy problem by imposing additional conditions on initial data. In this article, we obtain the same asymptotic behaviour of solutions to the Cauchy problem without imposing additional condition on initial data.展开更多
A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the c...A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.展开更多
In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The ob...In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program.展开更多
It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched lay...It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched layer approach is applied to truncate the unbounded physical domain, and obtain an initial boundary value problem on a bounded computational domain, which can be efficiently solved by the finite difference method. The stability of the reduced initial boundary value problem is rigorously analyzed. Some numerical results are presented to illustrate the accuracy and feasibility of the perfectly matched layer approach. According to these examples, the absorption parameters and the width of the absorption layer will affect the absorption effect. The larger the absorption width, the better the absorption effect. There is an optimal absorption parameter, the absorption effect is the best.展开更多
We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filament...We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.展开更多
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i...This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.展开更多
Time-delay effects on the dynamics of Li^nard type equation with one fast variable and one slow variable are investigated in the present paper. By using the methods of stability switch and geometric singular perturbat...Time-delay effects on the dynamics of Li^nard type equation with one fast variable and one slow variable are investigated in the present paper. By using the methods of stability switch and geometric singular perturbation, time-delay-induced complex oscillations and bursting are investigated, and in several case studies, the mechanism of the generation of the complex oscillations and bursting is illuminated. Numerical results demonstrate the validity of the theoretical results.展开更多
The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of a...The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.展开更多
The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized ...The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.展开更多
The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution ...The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution of the problem is constructed and the error estimation between spectral approximate solution and exact solution on large time is also obtained. The existence of the approximate attractor AN and the upper semicontinuity d(AN,A) → 0 are proved.展开更多
This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of th...This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.展开更多
: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati tech...: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.展开更多
This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequal...This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.展开更多
By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The resu...By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The results in this paper unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. The Theorems in this paper are new even in the continuous and the discrete cases.展开更多
To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of...To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of the memorial dynamics. Stability criteria of the scheme for an advection equation in certain conditions are derived mathematically. The computations for the advection equation have been conducted with its RT scheme. It is shown that the accuracy of the scheme is much higher than that of the leapfrog (LF) difference scheme.展开更多
基金Project supported by the National Natural Science Foun dation of China(Grant No.11274398).
文摘A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation.
基金partially supported by the National Nature Science Foundation of China(12271114)the Guangxi Natural Science Foundation(2023JJD110009,2019JJG110003,2019AC20214)+2 种基金the Innovation Project of Guangxi Graduate Education(JGY2023061)the Key Laboratory of Mathematical Model and Application(Guangxi Normal University)the Education Department of Guangxi Zhuang Autonomous Region。
文摘We are concerned with the large-time behavior of 3D quasilinear hyperbolic equations with nonlinear damping.The main novelty of this paper is two-fold.First,we prove the optimal decay rates of the second and third order spatial derivatives of the solution,which are the same as those of the heat equation,and in particular,are faster than ones of previous related works.Second,for well-chosen initial data,we also show that the lower optimal L^(2) convergence rate of the k(∈[0,3])-order spatial derivatives of the solution is(1+t)^(-(2+2k)/4).Therefore,our decay rates are optimal in this sense.The proofs are based on the Fourier splitting method,low-frequency and high-frequency decomposition,and delicate energy estimates.
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
文摘The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133)。
文摘In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.
基金S.Engu was supported by Council of Scientific and Industrial Research,India (File no. 25 (0302)/19/EMR-Ⅱ)。
文摘The existence, uniqueness and regularity of solutions to the Cauchy problem posed for a nonhomogeneous viscous Burger's equation were shown in Chung, Kim and Slemrod [1] by assuming suitable conditions on initial data. Moreover, they derived the asymptotic behaviour of solutions of the Cauchy problem by imposing additional conditions on initial data. In this article, we obtain the same asymptotic behaviour of solutions to the Cauchy problem without imposing additional condition on initial data.
基金the National Natural Science Foundation of China(No.11701103)the Young Top-notch Talent Program of Guangdong Province of China(No.2017GC010379)+4 种基金the Natural Science Foundation of Guangdong Province of China(No.2022A1515012147)the Project of Science and Technology of Guangzhou of China(No.202102020704)the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University of China(2021023)the Science and Technology Development Fund,Macao SAR(File No.0005/2019/A)the University of Macao of China(File Nos.MYRG2020-00035-FST,MYRG2018-00047-FST).
文摘A finite difference/spectral scheme is proposed for the time fractional Ito equation.The mass conservation and stability of the numerical solution are deduced by the energy method in the L^(2)norm form.To reduce the computation costs,the fast Fourier transform technic is applied to a pair of equivalent coupled differential equations.The effectiveness of the proposed algorithm is verified by the first numerical example.The mass conservation property and stability statement are confirmed by two other numerical examples.
文摘In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program.
文摘It is an important issue to numerically solve the time fractional Schrödinger equation on unbounded domains, which models the dynamics of optical solitons propagating via optical fibers. The perfectly matched layer approach is applied to truncate the unbounded physical domain, and obtain an initial boundary value problem on a bounded computational domain, which can be efficiently solved by the finite difference method. The stability of the reduced initial boundary value problem is rigorously analyzed. Some numerical results are presented to illustrate the accuracy and feasibility of the perfectly matched layer approach. According to these examples, the absorption parameters and the width of the absorption layer will affect the absorption effect. The larger the absorption width, the better the absorption effect. There is an optimal absorption parameter, the absorption effect is the best.
文摘We applied a spatial high-order finite-difference-time-domain (HO-FDTD) scheme to solve 2D Maxwell’s equations in order to develop a fluid model employed to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma. We examined the performance of the applied scheme, in this context, we implemented the developed model to study selected phenomena in terahertz radiation production, such as the excitation energy and conversion efficiency of the produced THz radiation, in addition to the influence of the pulse chirping on properties of the produced radiation. The obtained numerical results have clarified that the applied HO-FDTD scheme is precisely accurate to solve Maxwell’s equations and sufficiently valid to study the production of terahertz radiation by the filamentation of two femtosecond lasers in air plasma.
文摘This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation.
基金supported by the National Natural Science Foundation of China(11102078 and 11032009)Foundation of Jiangxi Education Committee of China(GJJ1169)
文摘Time-delay effects on the dynamics of Li^nard type equation with one fast variable and one slow variable are investigated in the present paper. By using the methods of stability switch and geometric singular perturbation, time-delay-induced complex oscillations and bursting are investigated, and in several case studies, the mechanism of the generation of the complex oscillations and bursting is illuminated. Numerical results demonstrate the validity of the theoretical results.
基金Project supported by the National Education Committee Doctoral Foundation of China (20020558092)
文摘The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.KYLX16-0414)
文摘The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.
基金This work was supported by the National Science Foundation of China(10271034)
文摘The asymptotic behavior of the solutions to a class of pseudoparabolic viscous diffusion equation with periodic initial condition is studied by using the spectral method. The semidiscrete Fourier approximate solution of the problem is constructed and the error estimation between spectral approximate solution and exact solution on large time is also obtained. The existence of the approximate attractor AN and the upper semicontinuity d(AN,A) → 0 are proved.
基金supported by the Program for New Century Excellent Talents in University of the Ministry of Education(NCET-13-0804)NSFC(11471127)+3 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(2015A030306029)The Excellent Young Teachers Program of Guangdong Province(HS2015007)Pearl River S&T Nova Program of Guangzhou(2013J2200064)supported by the General Research Fund of Hong Kong,City U 104511
文摘This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(09A082)
文摘: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.
基金Supported by the NNSF of China(11071222)Supported by the NSF of Hunan Province(12JJ6006)Supported by Scientific Research Fund of Education Department of Guangxi Zhuang Autonomous Region(2013YB223)
文摘This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.
文摘By using the generalized Riccati transformation and the integral averaging technique, the paper establishes some new oscillation criteria for the second-order nonlinear delay dynamic equations on time scales. The results in this paper unify the oscillation of the second-order nonlinear delay differential equation and the second-order nonlinear delay difference equation on time scales. The Theorems in this paper are new even in the continuous and the discrete cases.
基金The project supported by the National Key Program for Developing Basic Sciences (G1999043408 and G1998040901-1)the National Natural Sciences Foundation of China (40175024 and 40035010)
文摘To put more information into a difference scheme of a differential equation for making an accurate prediction, a new kind of time integration scheme, known as the retrospective (RT) scheme, is proposed on the basis of the memorial dynamics. Stability criteria of the scheme for an advection equation in certain conditions are derived mathematically. The computations for the advection equation have been conducted with its RT scheme. It is shown that the accuracy of the scheme is much higher than that of the leapfrog (LF) difference scheme.