Available safety egress time under ship fire (SFAT) is critical to ship fire safety assessment, design and emergency rescue. Although it is available to determine SFAT by using fire models such as the two-zone fire ...Available safety egress time under ship fire (SFAT) is critical to ship fire safety assessment, design and emergency rescue. Although it is available to determine SFAT by using fire models such as the two-zone fire model CFAST and the field model FDS, none of these models can address the uncertainties involved in the input parameters. To solve this problem, current study presents a framework of uncertainty analysis for SFAT. Firstly, a deterministic model estimating SFAT is built. The uncertainties of the input parameters are regarded as random variables with the given probability distribution functions. Subsequently, the deterministic SFAT model is employed to couple with a Monte Carlo sampling method to investigate the uncertainties of the SFAT. The Spearman's rank-order correlation coefficient (SRCC) is used to examine the sensitivity of each input uncertainty parameter on SFAT. To illustrate the proposed approach in detail, a case study is performed. Based on the proposed approach, probability density function and cumulative density function of SFAT are obtained. Furthermore, sensitivity analysis with regard to SFAT is also conducted. The results give a high-negative correlation of SFAT and the fire growth coefficient whereas the effect of other parameters is so weak that they can be neglected.展开更多
During the scenarios of cooperative tasks performed by a single truck and multiple drones,the route plan is prone to failure due to the unpredictable scenario change.In this situation,it is significant to replan the r...During the scenarios of cooperative tasks performed by a single truck and multiple drones,the route plan is prone to failure due to the unpredictable scenario change.In this situation,it is significant to replan the rendezvous route of the truck and drones as soon as possible,to ensure that all drones in flight can return to the truck before running out of energy.This paper addresses the problem of rendezvous route planning of truck and multi-drone.Due to the available time window constraints of drones,which limit not only the rendezvous time of the truck and drones but also the available period of each drone,there are obvious local optimum phenomena in the investigated problem,so it is difficult to find a feasible solution.A two-echelon heuristic algorithm is proposed.In the algorithm,the strategy jumping out of the local optimum and the heuristic generating the initial solution are introduced,to improve the probability and speed of obtaining a feasible solution for the rendezvous route.Simulation results show that the feasible solution of the truck-drones rendezvous route can be obtained with 88%probability in an average of 77 iterations for the scenario involving up to 25 drones.The influence of algorithm options on planning results is also analyzed.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50909058)"Chen Guang" Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation Science & Technology(Grant No. 10CG51)the Innovation Program of Shanghai Municipal Education Commission (Grant No.11YZ133)
文摘Available safety egress time under ship fire (SFAT) is critical to ship fire safety assessment, design and emergency rescue. Although it is available to determine SFAT by using fire models such as the two-zone fire model CFAST and the field model FDS, none of these models can address the uncertainties involved in the input parameters. To solve this problem, current study presents a framework of uncertainty analysis for SFAT. Firstly, a deterministic model estimating SFAT is built. The uncertainties of the input parameters are regarded as random variables with the given probability distribution functions. Subsequently, the deterministic SFAT model is employed to couple with a Monte Carlo sampling method to investigate the uncertainties of the SFAT. The Spearman's rank-order correlation coefficient (SRCC) is used to examine the sensitivity of each input uncertainty parameter on SFAT. To illustrate the proposed approach in detail, a case study is performed. Based on the proposed approach, probability density function and cumulative density function of SFAT are obtained. Furthermore, sensitivity analysis with regard to SFAT is also conducted. The results give a high-negative correlation of SFAT and the fire growth coefficient whereas the effect of other parameters is so weak that they can be neglected.
基金supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515011313)in part by Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2019ZT08Z780)in part by Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents。
文摘During the scenarios of cooperative tasks performed by a single truck and multiple drones,the route plan is prone to failure due to the unpredictable scenario change.In this situation,it is significant to replan the rendezvous route of the truck and drones as soon as possible,to ensure that all drones in flight can return to the truck before running out of energy.This paper addresses the problem of rendezvous route planning of truck and multi-drone.Due to the available time window constraints of drones,which limit not only the rendezvous time of the truck and drones but also the available period of each drone,there are obvious local optimum phenomena in the investigated problem,so it is difficult to find a feasible solution.A two-echelon heuristic algorithm is proposed.In the algorithm,the strategy jumping out of the local optimum and the heuristic generating the initial solution are introduced,to improve the probability and speed of obtaining a feasible solution for the rendezvous route.Simulation results show that the feasible solution of the truck-drones rendezvous route can be obtained with 88%probability in an average of 77 iterations for the scenario involving up to 25 drones.The influence of algorithm options on planning results is also analyzed.