Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algor...Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.展开更多
The original temporal clustering analysis (OTCA) is an effective technique for obtaining brain activation maps when the timing and location of the activation are completely unknown, but its deficiency of sensitivity i...The original temporal clustering analysis (OTCA) is an effective technique for obtaining brain activation maps when the timing and location of the activation are completely unknown, but its deficiency of sensitivity is exposed in processing brain activation signal which is relatively weak. The time slice analysis method based on OTCA is proposed considering the weakness of the functional magnetic resonance imaging (fMRI) signal of the rat model. By dividing the stimulation period into several time slices and analyzing each slice to detect the activated pixels respectively after the background removal, the sensitivity is significantly improved. The inhibitory response in the hypothalamus after glucose loading is detected successfully with this method in the experiment on rat. Combined with the OTCA method, the time slice analysis method based on OTCA is effective on detecting when, where and which type of response will happen after stimulation, even if the fMRI signal is weak.展开更多
A clustering algorithm and a probability statistics method were applied to different phases of a flight to analyze operation time during aircraft ground taxiing and airborne flight.And the clustering pattern,distribut...A clustering algorithm and a probability statistics method were applied to different phases of a flight to analyze operation time during aircraft ground taxiing and airborne flight.And the clustering pattern,distribution characteristics and dynamically changing rules of the two phases were identified.Further,an estimate method was established to measure operation time of flight legs,with creative steps of calculating individual segment separately and then integrating them accordingly.The method can both objectively and dynamically measure operation time,and accurately reflect real situation.It helps to better utilize airport slot resources and provides a strong support for air traffic flow management when scheduling flight plan in strategic and pre-tactic phases.展开更多
The traditional grey incidence degree is mainly based on the distance analysis methods, which is measured by the displacement difference between corresponding points between sequences. When some data of sequences are ...The traditional grey incidence degree is mainly based on the distance analysis methods, which is measured by the displacement difference between corresponding points between sequences. When some data of sequences are missing (inconsistency in the length of the sequences), the only way is to delete the longer sequences or to fill the shorter sequences. Therefore, some uncertainty is introduced. To solve this problem, by introducing three-dimensional grey incidence degree (3D-GID), a novel GID based on the multidimensional dynamic time warping distance (MDDTW distance-GID) is proposed. On the basis of it, the corresponding grey incidence clustering (MDDTW distance-GIC) method is constructed. It not only has the simpler computation process, but also can be applied to the incidence comparison between uncertain multidimensional sequences directly. The experiment shows that MDDTW distance-GIC is more accurate when dealing with the uncertain sequences. Compared with the traditional GIC method, the precision of the MDDTW distance-GIC method has increased nearly 30%.展开更多
Through Wireless Sensor Networks(WSN)formation,industrial and academic communities have seen remarkable development in recent decades.One of the most common techniques to derive the best out of wireless sensor network...Through Wireless Sensor Networks(WSN)formation,industrial and academic communities have seen remarkable development in recent decades.One of the most common techniques to derive the best out of wireless sensor networks is to upgrade the operating group.The most important problem is the arrangement of optimal number of sensor nodes as clusters to discuss clustering method.In this method,new client nodes and dynamic methods are used to determine the optimal number of clusters and cluster heads which are to be better organized and proposed to classify each round.Parameters of effective energy use and the ability to decide the best method of attachments are included.The Problem coverage find change ability network route due to which traffic and delays keep the performance to be very high.A newer version of Gravity Analysis Algorithm(GAA)is used to solve this problem.This proposed new approach GAA is introduced to improve network lifetime,increase system energy efficiency and end delay performance.Simulation results show that modified GAA performance is better than other networks and it has more advanced Life Time Delay Clustering Algorithms-LTDCA protocols.The proposed method provides a set of data collection and increased throughput in wireless sensor networks.展开更多
A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed....A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed.As a first attempt,this study examined the bubble clustering process in hydraulic jumps on a pebbled rough bed using experimental data for 1.70<Fr_(1)<2.84(with Fr_(1) denoting the inflow Froude number).The basic properties of particle grouping and clustering,including the number of clusters,the dimensionless number of clusters per second,the percentage of clustered bubbles,and the number of bubbles per cluster,were analyzed based on two criteria.For both criteria,the maximum cluster count rate was greater on the rough bed than on the smooth bed,suggesting greater interactions between turbulence and bubbly flow on the rough bed.The results were consistent with the longitudinal distribution of the interfacial velocity using one of the criteria.In addition,the clustering process was analyzed using a different approach:the interparticle arrival time of bubbles.The comparison showed that the bubbly flow structure had a greater density of bubbles per unitflux on the rough bed than on the smooth bed.Bed roughness was the dominant parameter close to the jump toe.Further downstream,Fr_(1) predominated.Thus,the rate of bubble density decreased more rapidly for the hydraulic jump with the lowest Fr_(1).展开更多
文摘Clustering is used to gain an intuition of the struc tures in the data.Most of the current clustering algorithms pro duce a clustering structure even on data that do not possess such structure.In these cases,the algorithms force a structure in the data instead of discovering one.To avoid false structures in the relations of data,a novel clusterability assessment method called density-based clusterability measure is proposed in this paper.I measures the prominence of clustering structure in the data to evaluate whether a cluster analysis could produce a meaningfu insight to the relationships in the data.This is especially useful in time-series data since visualizing the structure in time-series data is hard.The performance of the clusterability measure is evalu ated against several synthetic data sets and time-series data sets which illustrate that the density-based clusterability measure can successfully indicate clustering structure of time-series data.
基金the National Natural Science Foundation of China (30370432)
文摘The original temporal clustering analysis (OTCA) is an effective technique for obtaining brain activation maps when the timing and location of the activation are completely unknown, but its deficiency of sensitivity is exposed in processing brain activation signal which is relatively weak. The time slice analysis method based on OTCA is proposed considering the weakness of the functional magnetic resonance imaging (fMRI) signal of the rat model. By dividing the stimulation period into several time slices and analyzing each slice to detect the activated pixels respectively after the background removal, the sensitivity is significantly improved. The inhibitory response in the hypothalamus after glucose loading is detected successfully with this method in the experiment on rat. Combined with the OTCA method, the time slice analysis method based on OTCA is effective on detecting when, where and which type of response will happen after stimulation, even if the fMRI signal is weak.
基金supported by the National Natural Science Foundation of China(No.U1333202)
文摘A clustering algorithm and a probability statistics method were applied to different phases of a flight to analyze operation time during aircraft ground taxiing and airborne flight.And the clustering pattern,distribution characteristics and dynamically changing rules of the two phases were identified.Further,an estimate method was established to measure operation time of flight legs,with creative steps of calculating individual segment separately and then integrating them accordingly.The method can both objectively and dynamically measure operation time,and accurately reflect real situation.It helps to better utilize airport slot resources and provides a strong support for air traffic flow management when scheduling flight plan in strategic and pre-tactic phases.
基金supported by the National Natural Science Foundation of China(6153302061309014)the Natural Science Foundation Project of CQ CSTC(cstc2017jcyj AX0408)
文摘The traditional grey incidence degree is mainly based on the distance analysis methods, which is measured by the displacement difference between corresponding points between sequences. When some data of sequences are missing (inconsistency in the length of the sequences), the only way is to delete the longer sequences or to fill the shorter sequences. Therefore, some uncertainty is introduced. To solve this problem, by introducing three-dimensional grey incidence degree (3D-GID), a novel GID based on the multidimensional dynamic time warping distance (MDDTW distance-GID) is proposed. On the basis of it, the corresponding grey incidence clustering (MDDTW distance-GIC) method is constructed. It not only has the simpler computation process, but also can be applied to the incidence comparison between uncertain multidimensional sequences directly. The experiment shows that MDDTW distance-GIC is more accurate when dealing with the uncertain sequences. Compared with the traditional GIC method, the precision of the MDDTW distance-GIC method has increased nearly 30%.
文摘Through Wireless Sensor Networks(WSN)formation,industrial and academic communities have seen remarkable development in recent decades.One of the most common techniques to derive the best out of wireless sensor networks is to upgrade the operating group.The most important problem is the arrangement of optimal number of sensor nodes as clusters to discuss clustering method.In this method,new client nodes and dynamic methods are used to determine the optimal number of clusters and cluster heads which are to be better organized and proposed to classify each round.Parameters of effective energy use and the ability to decide the best method of attachments are included.The Problem coverage find change ability network route due to which traffic and delays keep the performance to be very high.A newer version of Gravity Analysis Algorithm(GAA)is used to solve this problem.This proposed new approach GAA is introduced to improve network lifetime,increase system energy efficiency and end delay performance.Simulation results show that modified GAA performance is better than other networks and it has more advanced Life Time Delay Clustering Algorithms-LTDCA protocols.The proposed method provides a set of data collection and increased throughput in wireless sensor networks.
文摘A survey on bubble clustering in air–water flow processes may provide significant insights into turbulent two-phaseflow.These processes have been studied in plunging jets,dropshafts,and hydraulic jumps on a smooth bed.As a first attempt,this study examined the bubble clustering process in hydraulic jumps on a pebbled rough bed using experimental data for 1.70<Fr_(1)<2.84(with Fr_(1) denoting the inflow Froude number).The basic properties of particle grouping and clustering,including the number of clusters,the dimensionless number of clusters per second,the percentage of clustered bubbles,and the number of bubbles per cluster,were analyzed based on two criteria.For both criteria,the maximum cluster count rate was greater on the rough bed than on the smooth bed,suggesting greater interactions between turbulence and bubbly flow on the rough bed.The results were consistent with the longitudinal distribution of the interfacial velocity using one of the criteria.In addition,the clustering process was analyzed using a different approach:the interparticle arrival time of bubbles.The comparison showed that the bubbly flow structure had a greater density of bubbles per unitflux on the rough bed than on the smooth bed.Bed roughness was the dominant parameter close to the jump toe.Further downstream,Fr_(1) predominated.Thus,the rate of bubble density decreased more rapidly for the hydraulic jump with the lowest Fr_(1).