The theory for measuring the time constant of thermocouple was introduced, and the method for measuring the time constant of NANMAC thermocouple by using dynamic calibration system of transient surface temperature sen...The theory for measuring the time constant of thermocouple was introduced, and the method for measuring the time constant of NANMAC thermocouple by using dynamic calibration system of transient surface temperature sensor was proposed. In this system, static and dynamic calibrations were conducted for infrared detectors and thermocouples, and then both temperature-time curves were obtained. Since the frequency response of infrared detector is superior to that of calibrat- ed thermocouple, the values measured by infrared detectors are taken as true values. Through dividing the values measured with thermocouples by those with infrared detectors, a normalized curve was obtained, based on which the time constant of thermocouple was measured. With this method, the experiments were carried out with NANMAC thermocouple to obtain its time constant. The results show that the method for measuring the time constant is feasible and the dynamic calibration of thermocouples can be achieved at microsecond and millisecond level. This research has a certain reference value for research and application of NANMAC thermocouple temperature sensor.展开更多
The influence of structural design and the parameters of the working electrode on the response time of a solid polymer electrolyte (SPE) carbon monoxide sensor has been studied. Results show that the response time is ...The influence of structural design and the parameters of the working electrode on the response time of a solid polymer electrolyte (SPE) carbon monoxide sensor has been studied. Results show that the response time is mainly determined by the RC time constant of the catalyst layer and also related with the working electrode potential.展开更多
q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hype...q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hyperstability concept and small-signal linearization technique.At first,the stability of q-axis rotor flux based MRAS is proven with Popov’s Hyperstability theory.Then,to find out the guidelines for optimally designing the coefficients in the PI controller,acting as the adaption mechanism in the MRAS,small-signal model of the estimation system is developed.The obtained linearization model not only allows the stability to be verified further through Routh criterion,but also reveals the distribution of the characteristic roots,which leads to the clue to optimal PI gains.The theoretical analysis and the resultant design guidelines of the adaptation PI gains are verified through simulation and experiments.展开更多
OBJECTIVE To investigate a new noninvasive method for calculating left ventricular diastolic time constant(Tau) through a continuous-wave aortic regurgitation Doppler spectrum.METHODS According to ultrasound guidance,...OBJECTIVE To investigate a new noninvasive method for calculating left ventricular diastolic time constant(Tau) through a continuous-wave aortic regurgitation Doppler spectrum.METHODS According to ultrasound guidance, twenty-four animal models(beagles) of aortic regurgitation and acute ischemic left ventricular diastolic dysfunction were created. The left ventricular diastolic function was manipulated with dobutamine or esmolol and fifty-nine hemodynamic stages were achieved. Raw audio signals of the continuous-wave Doppler spectra were collected, and new aortic regurgitation Doppler spectra were built after reprocessing by a personal computer. The updating time of the spectral line was 0.3 ms. The new Doppler spectra contour line was automated using MATLAB(MATrix LABoratory, MathWorks, Natick, MA, USA), and two time intervals,(t2–t1) and(t3–t1) were measured on the ascending branch of the aortic regurgitation Doppler spectrum. Then, the two time intervals were substituted into Bai's equations, and Doppler-derived Tau(Tau-D)was resolved and compared with catheter-derived Tau(Tau-c).RESULTS There is no significant difference between Tau-D and Tau-c(45.95 ± 16.90 ms and 46.81 ± 17.31 ms, respectively;P >0.05). Correlation analysis between Tau-c and Tau-D suggested a strong positive relationship(r = 0.97, P = 0.000). A Bland-Altman plot of Tau-c and Tau-D revealed fair agreement.CONCLUSIONS This new calculation method is simple, convenient, and shows a strong positive relationship and fair agreement with the catheter method.展开更多
Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation ...Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation of the rotor field. A new approach serves for rotor time constant on-line adaptation by setting the stator current to be zero for a short period. A smooth eorrector is designed to prevent ab- normal detection result from making adaptation. Impact of zero current duration on detection error and rotor speed is analyzed by experiments.展开更多
Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical cha...Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.展开更多
Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-sec...Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.展开更多
In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate ...In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate the time constant of a semiconductor survey meter and confirm the meter’s function. An additional filter was attached to the medical X-ray system to satisfy the standards of N-60 to N-120, more copper plates were added as needed, and the first and second half-value layers were calculated to enable comparisons of the facility’s X-ray system quality with the N-60 to N-120 quality values. Next, we used a medical X-ray system to measure the leakage dose and calculate the time constant of the survey meter. The functionality of the meter was then checked and compared with the energy characteristics of the meter. The experimental results showed that it was possible to use a medical X-ray system to reproduce the N-60 to N-120 radiation quality values and to calculate the time constant from the measured results, assuming actual leakage dosimetry for that radiation quality. We also found that the calibration factor was equivalent to that of the energy characteristics of the survey meter.展开更多
Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resol...Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.展开更多
In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments.A number of different approaches,which differ even by the definition of the problem,are used in the literature...In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments.A number of different approaches,which differ even by the definition of the problem,are used in the literature.Some aimed towards finding an equivalent circuit.Others aimed towards finding directly dielectric properties of the material under an assumed model.Others towards finding distribution of relaxation times,either parametric or point-by point.No matter what the approach is,this will always be an ill-posed problem in the sense that there exist a large number of possible solutions that solve the problem (mathematically) equally well.Therefore some a-priori knowledge about the system must he used.In addition,we should remember that the ultimate goal is to get physical insight about the system.展开更多
We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal p...We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal parameters and the transient junction temperature of the LDM are modeled and obtained according to the temperature of the thermistor integrated in the module.Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines,and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process.展开更多
Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analy...Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.展开更多
According to the characteristic of the sensor inertia, the dynamic prediction to improve the system dynamic precision is presented in this paper. With the recurrence calculation of time constant of the sensor, the sys...According to the characteristic of the sensor inertia, the dynamic prediction to improve the system dynamic precision is presented in this paper. With the recurrence calculation of time constant of the sensor, the system dynamic precision is greatly improved. The example using this method is given.展开更多
This study investigates the effect of the magnetic field on the transient density of excess minority charge carriers in the base of a series-connected vertical junction silicon solar cell. The solar cell is presented ...This study investigates the effect of the magnetic field on the transient density of excess minority charge carriers in the base of a series-connected vertical junction silicon solar cell. The solar cell is presented in open circuit transient operation. The magnetic field through the Laplace force which deflects the photogenerated carriers from their initial trajectory towards the lateral surfaces reducing their mobility, diffusion and conduction, will certainly influence the decay time of the transient regime. The transient density of excess minority carriers in the base is a sum of infinite terms whose decay time of the different harmonics is studied.展开更多
Public key cryptographic (PKC) algorithms, such as the RSA, elliptic curve digital signature algorithm (ECDSA) etc., are widely used in the secure communication sys- tems, such as OpenSSL, and a variety of in- for...Public key cryptographic (PKC) algorithms, such as the RSA, elliptic curve digital signature algorithm (ECDSA) etc., are widely used in the secure communication sys- tems, such as OpenSSL, and a variety of in- formation security systems. If designer do not securely implement them, the secret key will be easily extracted by side-channel attacks (SCAs) or combinational SCA thus mitigat- ing the security of the entire communication system. Previous countermeasures of PKC im- plementations focused on the core part of the algorithms and ignored the modular inversion which is widely used in various PKC schemes. Many researchers believe that instead of straightforward implementation, constant time modular inversion (CTMI) is enough to resist the attack of simple power analysis combined with lattice analysis. However, we find that the CTMI security can be reduced to a hidden t-bit multiplier problem. Based on this feature, we firstly obtain Hamming weight of interme- diate data through side-channel leakage. Then, we propose a heuristic algorithm to solve the problem by revealing the secret (partial and full) base of CTMI. Comparing previous nec-essary input message for masking filtering, our procedure need not any information about the secret base of the inversion. To our knowl- edge, this is the first time for evaluating the practical security of CTM! and experimental results show the fact that CTMI is not enough for high-level secure communication systems.展开更多
This work is devoted to an experimental study of metallic pressure cooker insulated with kapok wool, a vegetal biodegradable fiber. Experiments conducted on the cooling of hot water in the equipment revealed very low ...This work is devoted to an experimental study of metallic pressure cooker insulated with kapok wool, a vegetal biodegradable fiber. Experiments conducted on the cooling of hot water in the equipment revealed very low heat losses and a time constant of 60 hours on average. As a result, the equipment makes it possible to finish cooking meals only thanks to the heat stored at the beginning of cooking and keeps cooked dishes warm for long hours. The thermal phase shift of the pressure cooker is around 7?h. Cooking tests conducted on some local dishes revealed about 70% butane gas savings for cooking cowpea and white rice, 38% for cooking fatty rice, 75% for pasta and couscous, and 30% for cooking potato stew. These results show that this technology can contribute to minimizing?energy consumption in the restaurant sector.展开更多
A new,fundamental catchment attribute called the hydrologic time scaleτgoverns the rate of delivery of runoff to a particular site,and is equal to∫Qdt/∫|dQ|,where Q is discharge and t is time.The value ofτfor any ...A new,fundamental catchment attribute called the hydrologic time scaleτgoverns the rate of delivery of runoff to a particular site,and is equal to∫Qdt/∫|dQ|,where Q is discharge and t is time.The value ofτfor any gauged site is readily calculated from tabulated discharge data by replacing the integrals with sums.This quantity,coupled with the square root of catchment area,√A,form a coordinate pair that embodies the characteristic time and length scales for any catchment,which govern its flow dynamics.The fitting constants used in several unit hydrograph models are simple multiples ofτ,so knowledge ofτallows rapid calibration of these models for the particular site,facilitating flow prediction from rainfall data.Values ofτreflect many different landscape attributes,but for multiple sub-basins in watersheds with homogeneous land use and lithologic conditions,they correlate linearly with √A.The ratio √A/τprovides a characteristic velocity that is high for channelized,floodprone rivers,for flashy urban streams with high impervious cover,and for sites downstream of hydropower dams.Sites with low velocities are resistant to flooding,as their landscapes have a greater ability to delay the delivery of runoff by retention,detention,and infiltration into the groundwater system.展开更多
The photoplethysmogram(PPG) of a pulse wave,similar in appearance to the arterial blood pressure(ABP) waveform,contains rich information about the cardiovascular system.The decay time constant RC,equal to the product ...The photoplethysmogram(PPG) of a pulse wave,similar in appearance to the arterial blood pressure(ABP) waveform,contains rich information about the cardiovascular system.The decay time constant RC,equal to the product of peripheral resistance R and total arterial compliance C,is a meaningful cardiovascular model parameter in vascular assessment.Using or ameliorating the existing ABP methods does not achieve a satisfactory estimation of RC from the PPG volume pulse(VRC).Thus,a novel non-iterative shape method(NSM) of evaluating VRC is introduced in this paper.The mathematic expression between a novel,readily available morphological parameter called the area difference ratio(ADR) and VRC was established.As it was difficult to calculate VRC from the complicated expression analytically,we recommend estimating it using a piecewise linear interpolation criterion.Also,since the effect of the PPG magnitude is eliminated in the calculation of ADR,precaliberation or normalization is dispensable in the NSM.Results of human experiments indicated that the NSM was computationally efficient,and the simulation experiments confirmed that the NSM was theoretically available for ABP.展开更多
The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the a...The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ACDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me, h, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ - e^2/(hc) keeps to be invariant; (ii) (2s^1/2 - 2p^1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting △E(z) are calculated analytically, which belongs to O(1/R^2)-physics of dS-SR QM. Numerically, we find that when |R| = {103 Gly, 104 Gly, 105 Gly}, and z = {1, or 2}, the AE(z) 〉〉 1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.展开更多
A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented.An electrothermal model is introduced to simulate the thermal time constant. An analyti...A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented.An electrothermal model is introduced to simulate the thermal time constant. An analytical result,about 160 ms,of the thermal time constant from the non-stationary Fourier heat equations for the structure of the sensor is also given.The sensor measures the microwave power jumping from 15 to 20 dBm at a constant frequency 15 GHz,and the experimental thermal time constant result is 180 ms.The frequency is also changed from 20 to 10 GHz with a constant power 20 dBm,and the result is also 180 ms.Compared with the analytical and experimental results,the model is verified.展开更多
文摘The theory for measuring the time constant of thermocouple was introduced, and the method for measuring the time constant of NANMAC thermocouple by using dynamic calibration system of transient surface temperature sensor was proposed. In this system, static and dynamic calibrations were conducted for infrared detectors and thermocouples, and then both temperature-time curves were obtained. Since the frequency response of infrared detector is superior to that of calibrat- ed thermocouple, the values measured by infrared detectors are taken as true values. Through dividing the values measured with thermocouples by those with infrared detectors, a normalized curve was obtained, based on which the time constant of thermocouple was measured. With this method, the experiments were carried out with NANMAC thermocouple to obtain its time constant. The results show that the method for measuring the time constant is feasible and the dynamic calibration of thermocouples can be achieved at microsecond and millisecond level. This research has a certain reference value for research and application of NANMAC thermocouple temperature sensor.
基金Supported by the National Natural Science Foundation of China(10 7880 2 33)
文摘The influence of structural design and the parameters of the working electrode on the response time of a solid polymer electrolyte (SPE) carbon monoxide sensor has been studied. Results show that the response time is mainly determined by the RC time constant of the catalyst layer and also related with the working electrode potential.
文摘q-axis rotor flux can be chosen to form a model reference adaptive system(MRAS)updating rotor time constant online in induction motor drives.This paper presents a stability analysis of such a system with Popov’s hyperstability concept and small-signal linearization technique.At first,the stability of q-axis rotor flux based MRAS is proven with Popov’s Hyperstability theory.Then,to find out the guidelines for optimally designing the coefficients in the PI controller,acting as the adaption mechanism in the MRAS,small-signal model of the estimation system is developed.The obtained linearization model not only allows the stability to be verified further through Routh criterion,but also reveals the distribution of the characteristic roots,which leads to the clue to optimal PI gains.The theoretical analysis and the resultant design guidelines of the adaptation PI gains are verified through simulation and experiments.
基金supported by the National Natural Science Foundation of China (No.81771833)the Beijing Natural Science Foundation (No.7172209)。
文摘OBJECTIVE To investigate a new noninvasive method for calculating left ventricular diastolic time constant(Tau) through a continuous-wave aortic regurgitation Doppler spectrum.METHODS According to ultrasound guidance, twenty-four animal models(beagles) of aortic regurgitation and acute ischemic left ventricular diastolic dysfunction were created. The left ventricular diastolic function was manipulated with dobutamine or esmolol and fifty-nine hemodynamic stages were achieved. Raw audio signals of the continuous-wave Doppler spectra were collected, and new aortic regurgitation Doppler spectra were built after reprocessing by a personal computer. The updating time of the spectral line was 0.3 ms. The new Doppler spectra contour line was automated using MATLAB(MATrix LABoratory, MathWorks, Natick, MA, USA), and two time intervals,(t2–t1) and(t3–t1) were measured on the ascending branch of the aortic regurgitation Doppler spectrum. Then, the two time intervals were substituted into Bai's equations, and Doppler-derived Tau(Tau-D)was resolved and compared with catheter-derived Tau(Tau-c).RESULTS There is no significant difference between Tau-D and Tau-c(45.95 ± 16.90 ms and 46.81 ± 17.31 ms, respectively;P >0.05). Correlation analysis between Tau-c and Tau-D suggested a strong positive relationship(r = 0.97, P = 0.000). A Bland-Altman plot of Tau-c and Tau-D revealed fair agreement.CONCLUSIONS This new calculation method is simple, convenient, and shows a strong positive relationship and fair agreement with the catheter method.
基金Supported by the National Natural Science Foundation of China(No.51276016)the Fundamental Research Funds for the Central University(No.FRF-TP-12-059A)
文摘Rotor time constant is an important parameter for the indirect lleld oraentateO control of mauc- tion motor. Incorrect rotor tittle constant value will cause the flux observer generating a wrong angu- lar orientation of the rotor field. A new approach serves for rotor time constant on-line adaptation by setting the stator current to be zero for a short period. A smooth eorrector is designed to prevent ab- normal detection result from making adaptation. Impact of zero current duration on detection error and rotor speed is analyzed by experiments.
基金supported in part by the Australian Research Council Discovery Early Career Researcher Award(DE200101128)。
文摘Platooning represents one of the key features that connected automated vehicles may possess as it allows multiple automated vehicles to be maneuvered cooperatively with small headways on roads. However, a critical challenge in accomplishing automated vehicle platoons is to deal with the effects of intermittent and sporadic vehicle-to-vehicle data transmissions caused by limited wireless communication resources. This paper addresses the co-design problem of dynamic event-triggered communication scheduling and cooperative adaptive cruise control for a convoy of automated vehicles with diverse spacing policies. The central aim is to achieve automated vehicle platooning under various gap references with desired platoon stability and spacing performance requirements, while simultaneously improving communication efficiency. Toward this aim, a dynamic event-triggered scheduling mechanism is developed such that the intervehicle data transmissions are scheduled dynamically and efficiently over time. Then, a tractable co-design criterion on the existence of both the admissible event-driven cooperative adaptive cruise control law and the desired scheduling mechanism is derived. Finally, comparative simulation results are presented to substantiate the effectiveness and merits of the obtained results.
基金supported by ShanghaiTech University Startup Fund 2017F0203-000-14the National Natural Science Foundation of China(Grant No.52131303)+1 种基金Natural Science Foundation of Shanghai(Grant No.22ZR1442300)in part by CAS Strategic Science and Technology Program(Grant No.XDA18000000).
文摘Emission and capture characteristics of a deep hole trap(H1)in n-GaN Schottky barrier diodes(SBDs)have been investigated by optical deep level transient spectroscopy(ODLTS).Activation energy(Eemi)and capture cross-section(σ_(p))of H1 are determined to be 0.75 eV and 4.67×10^(−15)cm^(2),respectively.Distribution of apparent trap concentration in space charge region is demonstrated.Temperature-enhanced emission process is revealed by decrease of emission time constant.Electricfield-boosted trap emission kinetics are analyzed by the Poole−Frenkel emission(PFE)model.In addition,H1 shows point defect capture properties and temperature-enhanced capture kinetics.Taking both hole capture and emission processes into account during laser beam incidence,H1 features a trap concentration of 2.67×10^(15)cm^(−3).The method and obtained results may facilitate understanding of minority carrier trap properties in wide bandgap semiconductor material and can be applied for device reliability assessment.
文摘In recent years, semiconductor survey meters have been developed and are in increasing demand worldwide. This study determined if it is possible to use the X-ray system installed in each medical facility to calculate the time constant of a semiconductor survey meter and confirm the meter’s function. An additional filter was attached to the medical X-ray system to satisfy the standards of N-60 to N-120, more copper plates were added as needed, and the first and second half-value layers were calculated to enable comparisons of the facility’s X-ray system quality with the N-60 to N-120 quality values. Next, we used a medical X-ray system to measure the leakage dose and calculate the time constant of the survey meter. The functionality of the meter was then checked and compared with the energy characteristics of the meter. The experimental results showed that it was possible to use a medical X-ray system to reproduce the N-60 to N-120 radiation quality values and to calculate the time constant from the measured results, assuming actual leakage dosimetry for that radiation quality. We also found that the calibration factor was equivalent to that of the energy characteristics of the survey meter.
文摘Thylakoid membrane preparations of super high-yield hybrid rice (Oryza sativa L.), Liangyoupeijiu (P9) and Shanyou 63 (SH 63) were used for investigating its spectral and time properties by using picosecond time-resolved fluorescence spectrum measuring system. The thylakoid membrane preparations of P9 and SH 63 were excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. The time constants of the excited energy transfer in these two varieties at flowering stage and grain filling stage were calculated from the experimental data. Based on the comparative studies of the time and spectral properties of the excited fluorescence in these ultrafast dynamic experiments the following was found: at both the flowering stage and grain filling stage, the speed of the excitation energy transfer, in photosystem was faster than that in photosystem II in P9 variety; and the speed of the excitation energy transfer at grain filling stage was faster than those at flowering stage for both rice varieties; the experiments also implied that the components and assembly of pigments in SH 63, but not in P9, changed during the process from flowering stage to grain filling stage for in these two rice varieties.
文摘In this contribution we briefly discuss several analysis techniques for impedance spectroscopy experiments.A number of different approaches,which differ even by the definition of the problem,are used in the literature.Some aimed towards finding an equivalent circuit.Others aimed towards finding directly dielectric properties of the material under an assumed model.Others towards finding distribution of relaxation times,either parametric or point-by point.No matter what the approach is,this will always be an ill-posed problem in the sense that there exist a large number of possible solutions that solve the problem (mathematically) equally well.Therefore some a-priori knowledge about the system must he used.In addition,we should remember that the ultimate goal is to get physical insight about the system.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 60938002)the Special-funded Program on National Key Scientific Instruments and Equipment Development of China (Grant No. 2012YQ06016501)the Tianjin Research Program of Application Foundation and Advanced Technology,China (Grant No. 11JCYBJC04900)
文摘We improved the thermal equivalent-circuit model of the laser diode module(LDM) to evaluate its thermal dynamic properties and calculate the junction temperature of the laser diode with a high accuracy.The thermal parameters and the transient junction temperature of the LDM are modeled and obtained according to the temperature of the thermistor integrated in the module.Our improved thermal model is verified indirectly by monitoring the emission wavelength of the laser diode against gas absorption lines,and several thermal parameters are obtained with the temperature uncertainty of 0.01 K in the thermal dynamic process.
基金This work was financially supported by the National Key Science-Technology Project during the Tenth Five-Year-Plan period of China under Grant No.2001BA609A and No.2004BA615A.
文摘Mathematical models of the grinding process are the basis of analysis, simulation and control. Most existent models in- cluding theoretical models and identification models are, however, inconvenient for direct analysis. In addition, many models pay much attention to the local details in the closed-circuit grinding process while overlooking the systematic behavior of the process as a whole. From the systematic perspective, the dynamic behavior of the whole closed-circuit grinding-classification process is consid- ered and a first-order transfer function model describing the dynamic relation between the raw material and the product is established. The model proves that the time constant of the closed-circuit process is lager than that of the open-circuit process and reveals how physical parameters affect the process dynamic behavior. These are very helpful to understand, design and control the closed-circuit grinding-classification process.
文摘According to the characteristic of the sensor inertia, the dynamic prediction to improve the system dynamic precision is presented in this paper. With the recurrence calculation of time constant of the sensor, the system dynamic precision is greatly improved. The example using this method is given.
文摘This study investigates the effect of the magnetic field on the transient density of excess minority charge carriers in the base of a series-connected vertical junction silicon solar cell. The solar cell is presented in open circuit transient operation. The magnetic field through the Laplace force which deflects the photogenerated carriers from their initial trajectory towards the lateral surfaces reducing their mobility, diffusion and conduction, will certainly influence the decay time of the transient regime. The transient density of excess minority carriers in the base is a sum of infinite terms whose decay time of the different harmonics is studied.
基金supported by the Key Technology Research and Sample-Chip Manufacture on Resistance to Physical Attacks at Circuit Level(546816170002)
文摘Public key cryptographic (PKC) algorithms, such as the RSA, elliptic curve digital signature algorithm (ECDSA) etc., are widely used in the secure communication sys- tems, such as OpenSSL, and a variety of in- formation security systems. If designer do not securely implement them, the secret key will be easily extracted by side-channel attacks (SCAs) or combinational SCA thus mitigat- ing the security of the entire communication system. Previous countermeasures of PKC im- plementations focused on the core part of the algorithms and ignored the modular inversion which is widely used in various PKC schemes. Many researchers believe that instead of straightforward implementation, constant time modular inversion (CTMI) is enough to resist the attack of simple power analysis combined with lattice analysis. However, we find that the CTMI security can be reduced to a hidden t-bit multiplier problem. Based on this feature, we firstly obtain Hamming weight of interme- diate data through side-channel leakage. Then, we propose a heuristic algorithm to solve the problem by revealing the secret (partial and full) base of CTMI. Comparing previous nec-essary input message for masking filtering, our procedure need not any information about the secret base of the inversion. To our knowl- edge, this is the first time for evaluating the practical security of CTM! and experimental results show the fact that CTMI is not enough for high-level secure communication systems.
基金the National Research Fund for Innovation and Development(FONRID)the International Science Program(ISP)for their financial support.
文摘This work is devoted to an experimental study of metallic pressure cooker insulated with kapok wool, a vegetal biodegradable fiber. Experiments conducted on the cooling of hot water in the equipment revealed very low heat losses and a time constant of 60 hours on average. As a result, the equipment makes it possible to finish cooking meals only thanks to the heat stored at the beginning of cooking and keeps cooked dishes warm for long hours. The thermal phase shift of the pressure cooker is around 7?h. Cooking tests conducted on some local dishes revealed about 70% butane gas savings for cooking cowpea and white rice, 38% for cooking fatty rice, 75% for pasta and couscous, and 30% for cooking potato stew. These results show that this technology can contribute to minimizing?energy consumption in the restaurant sector.
文摘A new,fundamental catchment attribute called the hydrologic time scaleτgoverns the rate of delivery of runoff to a particular site,and is equal to∫Qdt/∫|dQ|,where Q is discharge and t is time.The value ofτfor any gauged site is readily calculated from tabulated discharge data by replacing the integrals with sums.This quantity,coupled with the square root of catchment area,√A,form a coordinate pair that embodies the characteristic time and length scales for any catchment,which govern its flow dynamics.The fitting constants used in several unit hydrograph models are simple multiples ofτ,so knowledge ofτallows rapid calibration of these models for the particular site,facilitating flow prediction from rainfall data.Values ofτreflect many different landscape attributes,but for multiple sub-basins in watersheds with homogeneous land use and lithologic conditions,they correlate linearly with √A.The ratio √A/τprovides a characteristic velocity that is high for channelized,floodprone rivers,for flashy urban streams with high impervious cover,and for sites downstream of hydropower dams.Sites with low velocities are resistant to flooding,as their landscapes have a greater ability to delay the delivery of runoff by retention,detention,and infiltration into the groundwater system.
基金Project (No.81070885) supported by the National Natural Science Foundation of China
文摘The photoplethysmogram(PPG) of a pulse wave,similar in appearance to the arterial blood pressure(ABP) waveform,contains rich information about the cardiovascular system.The decay time constant RC,equal to the product of peripheral resistance R and total arterial compliance C,is a meaningful cardiovascular model parameter in vascular assessment.Using or ameliorating the existing ABP methods does not achieve a satisfactory estimation of RC from the PPG volume pulse(VRC).Thus,a novel non-iterative shape method(NSM) of evaluating VRC is introduced in this paper.The mathematic expression between a novel,readily available morphological parameter called the area difference ratio(ADR) and VRC was established.As it was difficult to calculate VRC from the complicated expression analytically,we recommend estimating it using a piecewise linear interpolation criterion.Also,since the effect of the PPG magnitude is eliminated in the calculation of ADR,precaliberation or normalization is dispensable in the NSM.Results of human experiments indicated that the NSM was computationally efficient,and the simulation experiments confirmed that the NSM was theoretically available for ABP.
基金Supported in part by National Natural Science Foundation of China under Grant No. 10975128by the Chinese Science Academy Foundation under Grant No. KJCX-YW-N29
文摘The de Sitter invariant Special Relativity (dS-SR) is SR with constant curvature, and a natural extension of usual Einstein SR (E-SR). In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ACDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that: (i) The fundamental physics constants me, h, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ - e^2/(hc) keeps to be invariant; (ii) (2s^1/2 - 2p^1/2)-splitting due to dS-SR QM effects: By means of perturbation theory, that splitting △E(z) are calculated analytically, which belongs to O(1/R^2)-physics of dS-SR QM. Numerically, we find that when |R| = {103 Gly, 104 Gly, 105 Gly}, and z = {1, or 2}, the AE(z) 〉〉 1 (Lamb shift). This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.
基金supported by the National Natural Science Foundation of China(No.60676043)the National High Technology Research and Development Program of China(No.2007AA04Z328)
文摘A terminating type MEMS microwave power sensor based on the Seebeck effect and compatible with the GaAs MMIC process is presented.An electrothermal model is introduced to simulate the thermal time constant. An analytical result,about 160 ms,of the thermal time constant from the non-stationary Fourier heat equations for the structure of the sensor is also given.The sensor measures the microwave power jumping from 15 to 20 dBm at a constant frequency 15 GHz,and the experimental thermal time constant result is 180 ms.The frequency is also changed from 20 to 10 GHz with a constant power 20 dBm,and the result is also 180 ms.Compared with the analytical and experimental results,the model is verified.