期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GrCol-PPFL:User-Based Group Collaborative Federated Learning Privacy Protection Framework 被引量:1
1
作者 Jieren Cheng Zhenhao Liu +2 位作者 Yiming Shi Ping Luo Victor S.Sheng 《Computers, Materials & Continua》 SCIE EI 2023年第1期1923-1939,共17页
With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal p... With the increasing number of smart devices and the development of machine learning technology,the value of users’personal data is becoming more and more important.Based on the premise of protecting users’personal privacy data,federated learning(FL)uses data stored on edge devices to realize training tasks by contributing training model parameters without revealing the original data.However,since FL can still leak the user’s original data by exchanging gradient information.The existing privacy protection strategy will increase the uplink time due to encryption measures.It is a huge challenge in terms of communication.When there are a large number of devices,the privacy protection cost of the system is higher.Based on these issues,we propose a privacy-preserving scheme of user-based group collaborative federated learning(GrCol-PPFL).Our scheme primarily divides participants into several groups and each group communicates in a chained transmission mechanism.All groups work in parallel at the same time.The server distributes a random parameter with the same dimension as the model parameter for each participant as a mask for the model parameter.We use the public datasets of modified national institute of standards and technology database(MNIST)to test the model accuracy.The experimental results show that GrCol-PPFL not only ensures the accuracy of themodel,but also ensures the security of the user’s original data when users collude with each other.Finally,through numerical experiments,we show that by changing the number of groups,we can find the optimal number of groups that reduces the uplink consumption time. 展开更多
关键词 Federated learning privacy protection uplink consumption time
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部