How to predict the bus arrival time accurately is a crucial problem to be solved in Internet of Vehicle. Existed methods cannot solve the problem effectively for ignoring the traffic delay jitter. In this paper,a thre...How to predict the bus arrival time accurately is a crucial problem to be solved in Internet of Vehicle. Existed methods cannot solve the problem effectively for ignoring the traffic delay jitter. In this paper,a three-stage mixed model is proposed for bus arrival time prediction. The first stage is pattern training. In this stage,the traffic delay jitter patterns(TDJP)are mined by K nearest neighbor and K-means in the historical traffic time data. The second stage is the single-step prediction,which is based on real-time adjusted Kalman filter with a modification of historical TDJP. In the third stage,as the influence of historical law is increasing in long distance prediction,we combine the single-step prediction dynamically with Markov historical transfer model to conduct the multi-step prediction. The experimental results show that the proposed single-step prediction model performs better in accuracy and efficiency than short-term traffic flow prediction and dynamic Kalman filter. The multi-step prediction provides a higher level veracity and reliability in travel time forecasting than short-term traffic flow and historical traffic pattern prediction models.展开更多
In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localizati...In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.展开更多
In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of ...In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.展开更多
To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)metho...To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)method to obtain the initial TDE.Secondly,a signal model using normalized cross spectrum is established,and the noise subspace is extracted by eigenvalue decomposition(EVD)of covariance matrix.Using the orthogonal relation between the steering vector and the noise subspace,the first-order Taylor expansion is carried out on the steering vector reconstructed by the initial TDE.Finally,the offsets are compensated via simple least squares(LS).Compared to other state-of-the-art methods,the proposed method significantly reduces the computational complexity and achieves better estimation performance.Experiments on both simulation and real-world data verify the efficiency of the proposed approach.展开更多
针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并...针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。展开更多
在TDOA(time difference of arrival)目标模拟系统中,采用微波光子链路传输包含精确TDOA信息的多路多频段目标模拟信号,为保证TDOA信息的精度足够高,需要精确测量目标模拟信号经过光子链路的传输延时。从特定工程应用角度提出一种光子...在TDOA(time difference of arrival)目标模拟系统中,采用微波光子链路传输包含精确TDOA信息的多路多频段目标模拟信号,为保证TDOA信息的精度足够高,需要精确测量目标模拟信号经过光子链路的传输延时。从特定工程应用角度提出一种光子链路传输延时测量方法,通过专用延时测量芯片实现传输延时高分辨率、高精度测量,通过延时测量信号和目标模拟信号分时占用单根光纤的相同光传输波道,实现光子链路传输延时测量和目标模拟信号传输分时工作,从机理上满足了精确测量光子链路传输延时所需硬件条件。试验结果:表明该方法可精确测量目标模拟信号经过光子链路的传输延时,测量误差小于1 ns,比传感器的TDOA测量精度高一个数量级,满足系统对光子链路传输延时的测量精度要求。展开更多
提出了一种基于到达时间(time of arrival,TOA)和到达时间差(time difference of arrival,TDOA)的空中运动平台对目标高精度三维定位的无源定位方法。该方法使用3个辅站信号到空中运动平台的TOA以及辅站位置确定空中运动平台自身的位置...提出了一种基于到达时间(time of arrival,TOA)和到达时间差(time difference of arrival,TDOA)的空中运动平台对目标高精度三维定位的无源定位方法。该方法使用3个辅站信号到空中运动平台的TOA以及辅站位置确定空中运动平台自身的位置,然后依据目标散射回波到达各个辅站与空中运动平台的TDOA确定目标的位置。分析了三维TDOA目标定位模糊产生的原因,提出了一种无模糊的高精度TDOA目标位置求解算法。仿真结果表明,该算法比经典的TDOA定位算法精度高,而且不存在定位模糊,从而验证了该空中运动平台对目标进行无源定位方法的有效性以及正确性。展开更多
本文针对Ho提出的基于TDOA(Time Difference of Arrival)与GROA(Gain Ratio of Arrival)信号源定位的代数闭式解,提出两种偏差消减方法.首先对其闭式解偏差进行了推导,然后给出BiasRed法与BiasSub法两种偏差消减算法,BiasSub法从Ho给出...本文针对Ho提出的基于TDOA(Time Difference of Arrival)与GROA(Gain Ratio of Arrival)信号源定位的代数闭式解,提出两种偏差消减方法.首先对其闭式解偏差进行了推导,然后给出BiasRed法与BiasSub法两种偏差消减算法,BiasSub法从Ho给出的解中直接减去期望偏差,BiasRed法通过分析误差表达方程并引入二次约束来提升定位估计精度;分析表明两种方法均可针对远距离信号源,在较小高斯误差情况下有效消减定位偏差,BiasRed法可将偏差降低到最大似然估计算法的水平;计算机仿真分析验证了所提算法的性能.展开更多
为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局...为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局部最优解的问题。因此,针对该问题,将目标函数转成二次约束二次规划问题,通过引入半定松弛(semi-definite relaxation,SDR)方法将目标函数转换为二阶锥规划(second order cone programming,SOCP)问题,寻找全局最优解。其次,针对SOCP无法对凸包外的目标进行有效定位的问题,在该算法的基础上引入了惩罚项,使松弛后的约束条件进一步逼近原始约束条件,解决了定位过程中的凸包问题。数值仿真结果表明:在10m×10m×3m的三维定位空间内,选取40×40个测试点,平均定位误差为1.39cm,可实现室内三维空间高精度定位。与传统的混合定位算法相比,均能够获得较高的定位精度。展开更多
基金National Science and Technology Major Project(2016ZX03001025-003)Special Found for Beijing Common Construction Project
文摘How to predict the bus arrival time accurately is a crucial problem to be solved in Internet of Vehicle. Existed methods cannot solve the problem effectively for ignoring the traffic delay jitter. In this paper,a three-stage mixed model is proposed for bus arrival time prediction. The first stage is pattern training. In this stage,the traffic delay jitter patterns(TDJP)are mined by K nearest neighbor and K-means in the historical traffic time data. The second stage is the single-step prediction,which is based on real-time adjusted Kalman filter with a modification of historical TDJP. In the third stage,as the influence of historical law is increasing in long distance prediction,we combine the single-step prediction dynamically with Markov historical transfer model to conduct the multi-step prediction. The experimental results show that the proposed single-step prediction model performs better in accuracy and efficiency than short-term traffic flow prediction and dynamic Kalman filter. The multi-step prediction provides a higher level veracity and reliability in travel time forecasting than short-term traffic flow and historical traffic pattern prediction models.
文摘In order to improve the accuracy and engineering feasibility of four-Satellite localization system, the frequency difference measurement is introduced to the four-Satellite TDOA (Time Difference of Arrival) localization algorithm. The TDOA/FDOA (Frequency Difference of Arrival) localization algorithm is used to optimize the GDOP (geometric dilution of precision) of four-Satellite localization. The simulation results show that the absolute position measurement accuracy has little influence on TDOA/FDOA localization accuracy as compared with TDOA localization. Under the same conditions, TDOA/FDOA localization has better accuracy and its GDOP shows more uniform distribution in diamond configuration case. The localization accuracy of four-Satellite TDOA/FDOA is better than the localization accuracy of four-Satellite TDOA.
基金supported by Nanjing University of Aeronautics and Astronautics Graduate Innovation Base(Laboratory)Open Fund(No.kfjj20200717).
文摘In order to meet the needs of collaborative decision making,considering the different demands of air traffic control units,airlines,airports and passengers in various traffic scenarios,the joint scheduling problem of arrival and departure flights is studied systematically.According to the matching degree of capacity and flow,it is determined that the traffic state of arrival/departure operation in a certain period is peak or off-peak.The demands of all parties in each traffic state are analyzed,and the mathematical models of arrival/departure flight scheduling in each traffic state are established.Aiming at the four kinds of joint operation traffic scenarios of arrival and departure,the corresponding bi-level programming models for joint scheduling of arrival and departure flights are established,respectively,and the elitism genetic algorithm is designed to solve the models.The results show that:Compared with the first-come-firstserved method,in the scenarios of arrival peak&departure off-peak and arrival peak&departure peak,the departure flight equilibrium satisfaction is improved,and the runway occupation time of departure flight flow is reduced by 38.8%.In the scenarios of arrival off-peak&departure off-peak and departure peak&arrival off-peak,the arrival flight equilibrium delay time is significantly reduced,the departure flight equilibrium satisfaction is improved by 77.6%,and the runway occupation time of departure flight flow is reduced by 46.6%.Compared with other four kinds of strategies,the optimal scheduling method can better balance fairness and efficiency,so the scheduling results are more reasonable.
基金supported in part by National Key R&D Program of China under Grants 2020YFB1807602 and 2020YFB1807600National Science Foundation of China(61971217,61971218,61631020,61601167)+1 种基金the Fund of Sonar Technology Key Laboratory(Range estimation and location technology of passive target viamultiple array combination),Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z013)China Postdoctoral Science Foundation(2020M681585).
文摘To improve the estimation accuracy,a novel time delay estimation(TDE)method based on the closed-form offset compensation is proposed.Firstly,we use the generalized cross-correlation with phase transform(GCC-PHAT)method to obtain the initial TDE.Secondly,a signal model using normalized cross spectrum is established,and the noise subspace is extracted by eigenvalue decomposition(EVD)of covariance matrix.Using the orthogonal relation between the steering vector and the noise subspace,the first-order Taylor expansion is carried out on the steering vector reconstructed by the initial TDE.Finally,the offsets are compensated via simple least squares(LS).Compared to other state-of-the-art methods,the proposed method significantly reduces the computational complexity and achieves better estimation performance.Experiments on both simulation and real-world data verify the efficiency of the proposed approach.
文摘针对水下目标被动定位中传感器位置误差带来的定位精度不高的问题,提出了一种基于两步最小二乘的到达时间差波达方向(time difference of arrival-direction of arrival,TDOA-DOA)目标定位算法。首先,构建TDOA-DOA理想化无误差模型,并利用最小二乘算法对目标位置进行粗估计。其次,考虑测量误差和传感器位置误差,构建目标定位误差和传感器位置的联合方程,并利用加权最小二乘求解。最后,利用目标定位误差对目标位置粗估计值进行修正,得到更精确的定位结果。仿真实验表明,所提算法可对目标位置和传感器位置进行联合估计,相较于已有算法具有更高的定位精度,更适用于传感器位置存在误差情况下的水下目标定位。
文摘在TDOA(time difference of arrival)目标模拟系统中,采用微波光子链路传输包含精确TDOA信息的多路多频段目标模拟信号,为保证TDOA信息的精度足够高,需要精确测量目标模拟信号经过光子链路的传输延时。从特定工程应用角度提出一种光子链路传输延时测量方法,通过专用延时测量芯片实现传输延时高分辨率、高精度测量,通过延时测量信号和目标模拟信号分时占用单根光纤的相同光传输波道,实现光子链路传输延时测量和目标模拟信号传输分时工作,从机理上满足了精确测量光子链路传输延时所需硬件条件。试验结果:表明该方法可精确测量目标模拟信号经过光子链路的传输延时,测量误差小于1 ns,比传感器的TDOA测量精度高一个数量级,满足系统对光子链路传输延时的测量精度要求。
文摘提出了一种基于到达时间(time of arrival,TOA)和到达时间差(time difference of arrival,TDOA)的空中运动平台对目标高精度三维定位的无源定位方法。该方法使用3个辅站信号到空中运动平台的TOA以及辅站位置确定空中运动平台自身的位置,然后依据目标散射回波到达各个辅站与空中运动平台的TDOA确定目标的位置。分析了三维TDOA目标定位模糊产生的原因,提出了一种无模糊的高精度TDOA目标位置求解算法。仿真结果表明,该算法比经典的TDOA定位算法精度高,而且不存在定位模糊,从而验证了该空中运动平台对目标进行无源定位方法的有效性以及正确性。
文摘本文针对Ho提出的基于TDOA(Time Difference of Arrival)与GROA(Gain Ratio of Arrival)信号源定位的代数闭式解,提出两种偏差消减方法.首先对其闭式解偏差进行了推导,然后给出BiasRed法与BiasSub法两种偏差消减算法,BiasSub法从Ho给出的解中直接减去期望偏差,BiasRed法通过分析误差表达方程并引入二次约束来提升定位估计精度;分析表明两种方法均可针对远距离信号源,在较小高斯误差情况下有效消减定位偏差,BiasRed法可将偏差降低到最大似然估计算法的水平;计算机仿真分析验证了所提算法的性能.
文摘为了提高室内三维空间的定位精度,提出了一种基于联合到达时间差与到达角度(time difference of arrival/angle of arrival,TDOA/AOA)信息的混合定位算法。由于构建的目标函数具有非凸性,采用传统定位算法在目标函数求解过程中会出现局部最优解的问题。因此,针对该问题,将目标函数转成二次约束二次规划问题,通过引入半定松弛(semi-definite relaxation,SDR)方法将目标函数转换为二阶锥规划(second order cone programming,SOCP)问题,寻找全局最优解。其次,针对SOCP无法对凸包外的目标进行有效定位的问题,在该算法的基础上引入了惩罚项,使松弛后的约束条件进一步逼近原始约束条件,解决了定位过程中的凸包问题。数值仿真结果表明:在10m×10m×3m的三维定位空间内,选取40×40个测试点,平均定位误差为1.39cm,可实现室内三维空间高精度定位。与传统的混合定位算法相比,均能够获得较高的定位精度。