A gated viewing laser radar has an excellent performance in underwater low light level imaging, and it also provides a viable solution to inhibit backscattering. In this paper, a gated viewing imaging system according...A gated viewing laser radar has an excellent performance in underwater low light level imaging, and it also provides a viable solution to inhibit backscattering. In this paper, a gated viewing imaging system according to the demand for real-time imaging is presented, and then the simulation is used to analyze the performance of the real-time gated viewing system. The range accuracy performance is limited by the slice number, the width of gate, the delay time step, the initial delay time, as well as the system noise and atmospheric turbulence. The simulation results indicate that the highest range accuracy can be achieved when the system works with the optimal parameters. Finally, how to choose the optimal parameters has been researched.展开更多
A multi-deposition multi-annealing technique (MDMA) is introduced into the process of high-k/metal gate MOSFET for the gate last process to effectively reduce the gate leakage and improve the device's performance. ...A multi-deposition multi-annealing technique (MDMA) is introduced into the process of high-k/metal gate MOSFET for the gate last process to effectively reduce the gate leakage and improve the device's performance. In this paper, we systematically investigate the electrical parameters and the time-dependent dielectric breakdown (TDDB) characteristics of positive channel metal oxide semiconductor (PMOS) under different MDMA process conditions, including the depo- sition/annealing (D&A) cycles, the D&A time, and the total annealing time. The results show that the increases of the number of D&A cycles (from 1 to 2) and D&A time (from 15 s to 30 s) can contribute to the results that the gate leakage current decreases by about one order of magnitude and that the time to fail (TTF) at 63.2% increases by about several times. However, too many D&A cycles (such as 4 cycles) make the equivalent oxide thickness (EOT) increase by about 1A and the TTF of PMOS worsen. Moreover, different D&A times and numbers of D&A cycles induce different breakdown mechanisms.展开更多
Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;how...Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;however, quality assurance (QA) for respiratory-gated RT using the RTRT system has not been reported. The purpose of this study was to perform QA for respiratorygated RT using the RTRT system. Materials and Methods: The RTRT system detected the position of the fiducial marker and radiation delivery gated to the motion of the marker was performed. The dynamic anthropomorphic thorax phantom was positioned at the isocenter using the fiducial marker in the phantom. The phantom was irradiated only when the fiducial marker was within a three-dimensional gating window of ±2 mm from the planned position. First, the absolute doses were measured using anionization chamber inserted in the phantom under the stationary, gating and non-gating state for sinusoidal (nadir-to-peak amplitude [A]: 20 - 40 mm, breathing period [T]: 2 - 4 s) and the basic respiratory patterns. Second, the dose profiles were measured using Gafchromic films in the phantom under the same conditions. Differences between dose profiles were calculated to evaluate the dosimetric and geometric accuracy. Finally, differences between the actual and measured position of the fiducial marker were calculated to evaluate the tracking accuracy for sinusoidal and basic respiratory patterns. Results: For the sinusoidal patterns, the relative doses were 0.93 for non-gating and 0.99 for gating (A = 20 mm, T = 2 s), 0.94 for non-gating and 1.00 for gating (A = 20 mm, T = 4 s), 0.55 for non-gating and 1.00 for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, the relative doses were 1.00 for non-gating and 1.00 for gating, respectively. Compared to the stationary conditions, the differences in lateral distance between the 90% dose of dose profiles were 6.23 mm for non-gating and 0.36 mm for gating (A = 20 mm, T = 2 s), 8.79 mm for non-gating and 1.73 mm for gating (A = 20 mm, T = 4 s), 18.37 mm for non-gating and 0.67 mm for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, those were 5.23 mm for non-gating and 0.35 mm for gating. The root mean square (RMS) values of the tracking error were 0.18 mm (A = 20 mm, T = 2 s), 0.14 mm (A = 20 mm, T = 4 s), and 0.21 mm (A = 40 mm, T = 4 s) for sinusoidal and 0.79 mm for the basic respiratory pattern, respectively. Conclusion: We conducted QA for respiratory-gated RT using the RTRT system. The respiratory-gated RT using the RTRT system reduced the blurring effects on dose distribution with high dosimetric and geometric accuracy.展开更多
现有的大多数兴趣点(point of interest,POI)推荐系统由于忽略了用户签到序列中的顺序行为模式,以及用户的个性化偏好对于POI推荐的影响,导致POI推荐系统性能较低,推荐结果不可靠,进而影响用户体验。为了解决上述问题,提出一种融合时序...现有的大多数兴趣点(point of interest,POI)推荐系统由于忽略了用户签到序列中的顺序行为模式,以及用户的个性化偏好对于POI推荐的影响,导致POI推荐系统性能较低,推荐结果不可靠,进而影响用户体验。为了解决上述问题,提出一种融合时序门控图神经网络的兴趣点推荐方法。运用时序门控图神经网络(temporal gated graph neural network,TGGNN)学习POI embedding;采用注意力机制捕获用户的长期偏好;通过注意力机制融合用户的最新偏好和实时偏好,进而捕获用户的短期偏好。通过自适应的方式结合用户的长期和短期偏好,计算候选POI的推荐得分,并根据得分为用户进行POI推荐。实验结果表明,与现有方法相比,该方法在召回率和平均倒数排名这两项指标上均有较为明显的提升,因此可以取得很好的推荐效果,具有良好的应用前景。展开更多
基金supported by the Pre-research Foundation under Grant No. G020104PJ09DZ0246
文摘A gated viewing laser radar has an excellent performance in underwater low light level imaging, and it also provides a viable solution to inhibit backscattering. In this paper, a gated viewing imaging system according to the demand for real-time imaging is presented, and then the simulation is used to analyze the performance of the real-time gated viewing system. The range accuracy performance is limited by the slice number, the width of gate, the delay time step, the initial delay time, as well as the system noise and atmospheric turbulence. The simulation results indicate that the highest range accuracy can be achieved when the system works with the optimal parameters. Finally, how to choose the optimal parameters has been researched.
基金supported by the National High Technology Research and Development Program of China(Grant No.SS2015AA010601)the National Natural Science Foundation of China(Grant Nos.61176091 and 61306129)
文摘A multi-deposition multi-annealing technique (MDMA) is introduced into the process of high-k/metal gate MOSFET for the gate last process to effectively reduce the gate leakage and improve the device's performance. In this paper, we systematically investigate the electrical parameters and the time-dependent dielectric breakdown (TDDB) characteristics of positive channel metal oxide semiconductor (PMOS) under different MDMA process conditions, including the depo- sition/annealing (D&A) cycles, the D&A time, and the total annealing time. The results show that the increases of the number of D&A cycles (from 1 to 2) and D&A time (from 15 s to 30 s) can contribute to the results that the gate leakage current decreases by about one order of magnitude and that the time to fail (TTF) at 63.2% increases by about several times. However, too many D&A cycles (such as 4 cycles) make the equivalent oxide thickness (EOT) increase by about 1A and the TTF of PMOS worsen. Moreover, different D&A times and numbers of D&A cycles induce different breakdown mechanisms.
文摘Purpose: Respiratory-gated radiation therapy (RT) using the real-time tumor-tracking radiotherapy (RTRT) system is an effective technique for managing tumor motion. High dosimetric and geometric accuracy is needed;however, quality assurance (QA) for respiratory-gated RT using the RTRT system has not been reported. The purpose of this study was to perform QA for respiratorygated RT using the RTRT system. Materials and Methods: The RTRT system detected the position of the fiducial marker and radiation delivery gated to the motion of the marker was performed. The dynamic anthropomorphic thorax phantom was positioned at the isocenter using the fiducial marker in the phantom. The phantom was irradiated only when the fiducial marker was within a three-dimensional gating window of ±2 mm from the planned position. First, the absolute doses were measured using anionization chamber inserted in the phantom under the stationary, gating and non-gating state for sinusoidal (nadir-to-peak amplitude [A]: 20 - 40 mm, breathing period [T]: 2 - 4 s) and the basic respiratory patterns. Second, the dose profiles were measured using Gafchromic films in the phantom under the same conditions. Differences between dose profiles were calculated to evaluate the dosimetric and geometric accuracy. Finally, differences between the actual and measured position of the fiducial marker were calculated to evaluate the tracking accuracy for sinusoidal and basic respiratory patterns. Results: For the sinusoidal patterns, the relative doses were 0.93 for non-gating and 0.99 for gating (A = 20 mm, T = 2 s), 0.94 for non-gating and 1.00 for gating (A = 20 mm, T = 4 s), 0.55 for non-gating and 1.00 for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, the relative doses were 1.00 for non-gating and 1.00 for gating, respectively. Compared to the stationary conditions, the differences in lateral distance between the 90% dose of dose profiles were 6.23 mm for non-gating and 0.36 mm for gating (A = 20 mm, T = 2 s), 8.79 mm for non-gating and 1.73 mm for gating (A = 20 mm, T = 4 s), 18.37 mm for non-gating and 0.67 mm for gating (A = 40 mm, T = 4 s), respectively. For the basic respiratory pattern, those were 5.23 mm for non-gating and 0.35 mm for gating. The root mean square (RMS) values of the tracking error were 0.18 mm (A = 20 mm, T = 2 s), 0.14 mm (A = 20 mm, T = 4 s), and 0.21 mm (A = 40 mm, T = 4 s) for sinusoidal and 0.79 mm for the basic respiratory pattern, respectively. Conclusion: We conducted QA for respiratory-gated RT using the RTRT system. The respiratory-gated RT using the RTRT system reduced the blurring effects on dose distribution with high dosimetric and geometric accuracy.