Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in a...Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.展开更多
Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to c...Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to continuously control the slope behaviour, until approaching failure conditions. The paper reported experimental data from smallscale physical models about the performance of Time Domain Reflectometry(TDR) and optical fibres, which act as the indicators of the incoming failure of slopes covered by unsaturated granular soils. Obtained results appear encouraging, since both sensors provide continuous information about the state of the slope, in terms of water content profiles and ongoing deformations, induced by rainwater infiltration, even immediately before the triggering of a fast landslide.展开更多
基金Project(2014XT01)supported by Research Funds for the Central Universities,ChinaProject(51034005)supported by the National Natural Science Foundation of China+1 种基金Project(2012AA062004)supported by High-Tech Research and Development Program of China(863 Program)Project(NCET-13-1022)supported by the Program for New Century Excellent Talents in University,China
文摘Remodeled clay and sand rock specimens were prepared by designing lateral confinement and water drainage experiments based on the stress exerted on granular materials in a waste dump.An in situ test was conducted in an internal waste dump;the physical and mechanical parameters of the remodeled rock mass dumped at different time and depths were measured.Based on statistics,regression analysis was performed with regard to the shearing stress parameters acquired from the two tests.Other factors,such as remodeling pressure(burial depth),remodeling time(amount of time since waste was dumped),and the corresponding functional relationship,were determined.Analysis indicates that the cohesion of the remodeled clay and its remodeling pressure are correlated by a quadratic function but are not correlated with remodeling time length.In situ experimental results indicate that the shear strength of reshaped granular materials in the internal dump is positively correlated with burial depth but poorly correlated with time length.Cohesion Cand burial depth H follow a quadratic function,specifically for a short time since waste has been dumped.As revealed by both in situ and laboratory experiments,the remodeling strength of granular materials varies in a certain pattern.The consistency of such materials verifies the reliability of the remodeling experimental program.
基金partially supported by the project Safe Land "Living with landslide risk in Europe: Assessment, effects of global change, and risk management strategies" under Grant No. 226479 (7th Framework Programme)
文摘Landslide risk is increasing in many parts of the world due to growth of population and infrastructures. Therefore, an effort has to be made in developing new and cheap sensors for areas susceptible of landslides to continuously control the slope behaviour, until approaching failure conditions. The paper reported experimental data from smallscale physical models about the performance of Time Domain Reflectometry(TDR) and optical fibres, which act as the indicators of the incoming failure of slopes covered by unsaturated granular soils. Obtained results appear encouraging, since both sensors provide continuous information about the state of the slope, in terms of water content profiles and ongoing deformations, induced by rainwater infiltration, even immediately before the triggering of a fast landslide.