The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS...The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.展开更多
Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman f...Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power of ARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.展开更多
Unlike acceleration, velocity, and displacement, the time derivative ofacceleration (TDoA) of ground motion has not been extensively studied. In this paper, the basiccharacteristics of TDoA are evaluated based on reco...Unlike acceleration, velocity, and displacement, the time derivative ofacceleration (TDoA) of ground motion has not been extensively studied. In this paper, the basiccharacteristics of TDoA are evaluated based on records from the 1999 Chi-Chi, earthquake (Mw 7.6)and one of its aftershocks (Mw 6.2). It is found that the maximum TDoA at a free-field station wasover 31,200 cm/s3 (31.8 g/s); and the duration of 'strong' TDoA, between the first and the last timepoints exceeding 2,000 cm/s3 (2 g/s), was almost one minute near the epicenter area. Since groundTDoA sensors are not commonly available, the time series are calculated by direct numericaldifferentiation of acceleration time series. Relative error analysis shows that the error isnon-transitive and total error is within 4%. The density function of TDoA amplitude, frequencycontent and spatial distribution of peak ground jerk (PGJ) are evaluated. The study also includesexamination of some TDoA responses from a seven-story building and comparison of ground TDoA withthe limit TDoA used in the transportation industry for ride comfort. Some potential impacts of TDoAon humans have also been reviewed.展开更多
Based on the method developed by M. Hirasawa and M. Watabe (1992), the authors deduced the related mathematical formulas. Taking an artificial ground motion compatible with single-damping as the original time history,...Based on the method developed by M. Hirasawa and M. Watabe (1992), the authors deduced the related mathematical formulas. Taking an artificial ground motion compatible with single-damping as the original time history, a small corrected time history was calculated by solving linear equations using a singular value decomposition method. We performed iteration to obtain the simulated earthquake motion compatible with multi-damping within a certain accuracy. The influences of selective matching frequencies are discussed preliminarily. Although the current criterion still has no explicit demand on different numbers of matching frequencies for various damping factors, it should be taken into account in practice.展开更多
Accurate estimation of the peak seismic responses of structures is important in earthquake resistant design. The internal force distributions and the seismic responses of structures are quite complex, since ground mot...Accurate estimation of the peak seismic responses of structures is important in earthquake resistant design. The internal force distributions and the seismic responses of structures are quite complex, since ground motions are multidirectional. One key issue is the uncertainty of the incident angle between the directions of ground motion and the reference axes of the structure. Different assumed seismic incidences can result in different peak values within the scope of design spectrum analysis for a given structure and earthquake ground motion record combination. Using time history analysis to determine the maximum structural responses excited by a given earthquake record requires repetitive calculations to determine the critical incident angle. This paper presents a transformation approach for relatively accurate and rapid determination of the maximum peak responses of a linear structure subjected to three-dimensional excitations within all possible seismic incident angles. The responses can be deformations, internal forces, strains and so on. An irregular building structure model is established using SAP2000 program. Several typical earthquake records and an artificial white noise are applied to the structure model to illustrate the variation of the maximum structural responses for different incident angles. Numerical results show that for many structural parameters, the variation can be greater than 100%. This method can be directly applied to time history analysis of structures using existing computer software to determine the peak responses without carrying out the analyses for all possible incident angles. It can also be used to verify and/or modify aseismic designs by using response spectrum analysis.展开更多
The objective of this study is to analyze the seismic response characteristics of 100 m, 200 m, 300 m spanned lattice domes under both horizontal and up-down ground motion of El Centro earthquake. For the analysis of ...The objective of this study is to analyze the seismic response characteristics of 100 m, 200 m, 300 m spanned lattice domes under both horizontal and up-down ground motion of El Centro earthquake. For the analysis of earthquake response of lattice domes, the time history analysis is used for the estimation of the dynamic response. Horizontal and up-down earthquake ground motions cause a large asymmetric vertical deformation in the large spatial domes. This study is to investigate the seismic characteristics of lattice domes for eigenvalue modes, displacement and acceleration response. The earthquake response of lattice domes with LRB (lead rubber bearing) isolation device by the horizontal and up-down combined ground motion is significantly reduced for the asymmetric vertical deformation and accelerations of domes.展开更多
基金funded by the National Natural Science Foundation of China under grant No.50578125
文摘The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.
基金Project supported by the National Natural Science Foundation of China (No.50008017)
文摘Representing earthquake ground: motion as time varying ARMA model, the instantaneous spectrum can only be determined by the time varying coefficients of the corresponding ARMA model. In this paper, unscented Kalman filter is applied to estimate the time varying coefficients. The comparison between the estimation results of unscented Kalman filter and Kalman filter methods shows that unscented Kalman filter can more precisely represent the distribution of the spectral peaks in time-frequency plane than Kalman filter, and its time and frequency resolution is finer which ensures its better ability to track the local properties of earthquake ground motions and to identify the systems with nonlinearity or abruptness. Moreover, the estimation results of ARMA models with different orders indicate that the theoretical frequency resolving power of ARMA model which was usually ignored in former studies has great effect on the estimation precision of instantaneous spectrum and it should be taken as one of the key factors in order selection of ARMA model.
基金National Science Foundation Under Grant No.CMS-0202846
文摘Unlike acceleration, velocity, and displacement, the time derivative ofacceleration (TDoA) of ground motion has not been extensively studied. In this paper, the basiccharacteristics of TDoA are evaluated based on records from the 1999 Chi-Chi, earthquake (Mw 7.6)and one of its aftershocks (Mw 6.2). It is found that the maximum TDoA at a free-field station wasover 31,200 cm/s3 (31.8 g/s); and the duration of 'strong' TDoA, between the first and the last timepoints exceeding 2,000 cm/s3 (2 g/s), was almost one minute near the epicenter area. Since groundTDoA sensors are not commonly available, the time series are calculated by direct numericaldifferentiation of acceleration time series. Relative error analysis shows that the error isnon-transitive and total error is within 4%. The density function of TDoA amplitude, frequencycontent and spatial distribution of peak ground jerk (PGJ) are evaluated. The study also includesexamination of some TDoA responses from a seven-story building and comparison of ground TDoA withthe limit TDoA used in the transportation industry for ride comfort. Some potential impacts of TDoAon humans have also been reviewed.
基金Contribution No. 99FC2009, Institute of Geophysics, CSB, Beijing, China.
文摘Based on the method developed by M. Hirasawa and M. Watabe (1992), the authors deduced the related mathematical formulas. Taking an artificial ground motion compatible with single-damping as the original time history, a small corrected time history was calculated by solving linear equations using a singular value decomposition method. We performed iteration to obtain the simulated earthquake motion compatible with multi-damping within a certain accuracy. The influences of selective matching frequencies are discussed preliminarily. Although the current criterion still has no explicit demand on different numbers of matching frequencies for various damping factors, it should be taken into account in practice.
基金Supported by: U.S. Federal Highway Administration Under Grant No. DTFH61-98-C-00094 U.S. National Science Foundation Under Grant No. CMS-9701471
文摘Accurate estimation of the peak seismic responses of structures is important in earthquake resistant design. The internal force distributions and the seismic responses of structures are quite complex, since ground motions are multidirectional. One key issue is the uncertainty of the incident angle between the directions of ground motion and the reference axes of the structure. Different assumed seismic incidences can result in different peak values within the scope of design spectrum analysis for a given structure and earthquake ground motion record combination. Using time history analysis to determine the maximum structural responses excited by a given earthquake record requires repetitive calculations to determine the critical incident angle. This paper presents a transformation approach for relatively accurate and rapid determination of the maximum peak responses of a linear structure subjected to three-dimensional excitations within all possible seismic incident angles. The responses can be deformations, internal forces, strains and so on. An irregular building structure model is established using SAP2000 program. Several typical earthquake records and an artificial white noise are applied to the structure model to illustrate the variation of the maximum structural responses for different incident angles. Numerical results show that for many structural parameters, the variation can be greater than 100%. This method can be directly applied to time history analysis of structures using existing computer software to determine the peak responses without carrying out the analyses for all possible incident angles. It can also be used to verify and/or modify aseismic designs by using response spectrum analysis.
文摘The objective of this study is to analyze the seismic response characteristics of 100 m, 200 m, 300 m spanned lattice domes under both horizontal and up-down ground motion of El Centro earthquake. For the analysis of earthquake response of lattice domes, the time history analysis is used for the estimation of the dynamic response. Horizontal and up-down earthquake ground motions cause a large asymmetric vertical deformation in the large spatial domes. This study is to investigate the seismic characteristics of lattice domes for eigenvalue modes, displacement and acceleration response. The earthquake response of lattice domes with LRB (lead rubber bearing) isolation device by the horizontal and up-down combined ground motion is significantly reduced for the asymmetric vertical deformation and accelerations of domes.