The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ...The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.展开更多
In this paper the inequality of Lemma 1 of [1] is extended. By means of our inequality and the method of Lyapunov function we study the stability of two kinds of large scale differential systems with time lag and the ...In this paper the inequality of Lemma 1 of [1] is extended. By means of our inequality and the method of Lyapunov function we study the stability of two kinds of large scale differential systems with time lag and the stability of a higher-order differential equation with time lag. The sufficient conditions for the stability (S. ), the asymptotic stability (A. S. ), the uniformly asymptotic stability (U. A. S. ) and the exponential asymptotic stability (E. A. S. ) of the zero solutions of the systems are obtained respectively.展开更多
Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality ...Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.展开更多
The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the ...The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.展开更多
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to...Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.展开更多
In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on ...In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on permeability and porosity.The time lag effect of rock deformation illustrating the relationship between changes in permeability and steady time was studied.Permeability reduction ratios were measured under different stress loading rates which were achieved by different pump rate settings.The results show that permeability and porosity gradually decrease with increases in effective pressure.Permeability at high effective pressure attains stability quickly.Steady times at low effective pressure are very long.Reduction in permeability at lower stress loading rates is small,while,in contrast,it is large at high stress loading rates.展开更多
A time-lagged ensemble method is used to improve 6-15 day precipitation forecasts from the Beijing Climate Center Atmospheric General Circulation Model,version 2.0.1.The approach averages the deterministic predictions...A time-lagged ensemble method is used to improve 6-15 day precipitation forecasts from the Beijing Climate Center Atmospheric General Circulation Model,version 2.0.1.The approach averages the deterministic predictions of precipitation from the most recent model run and from earlier runs,all at the same forecast valid time.This lagged average forecast (LAF) method assigns equal weight to each ensemble member and produces a forecast by taking the ensemble mean.Our analyses of the Equitable Threat Score,the Hanssen and Kuipers Score,and the frequency bias indicate that the LAF using five members at time-lagged intervals of 6 h improves 6-15 day forecasts of precipitation frequency above 1 mm d-1 and 5 mm d-1 in many regions of China,and is more effective than the LAF method with selection of the time-lagged interval of 12 or 24 h between ensemble members.In particular,significant improvements are seen over regions where the frequencies of rainfall days are higher than about 40%-50% in the summer season; these regions include northeastern and central to southern China,and the southeastem Tibetan Plateau.展开更多
Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its infl...Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its influencing factors in time lags of basal stem flow during the development of herbaceous plants including crops remain unclear. A field experiment was conducted in an arid region of Northwest China to examine the time lag characteristics of sap flow in seed-maize and to calibrate the transpiration modeling. Cross-correlation analysis was used to estimate the time lags between stem sap flow and meteorological driving factors including solar radiation(R_s) and vapor pressure deficit of the air(VPD_(air)). Results indicate that the changes in seed-maize stem sap flow consistently lagged behind the changes in R_s and preceded the changes in VPD_(air) both on hourly and daily scales, suggesting that light-mediated stomatal closures drove sap flow responses. The time lag in the maize's sap flow differed significantly during different growth stages and the difference was potentially due to developmental changes in capacitance tissue and/or xylem during ontogenesis. The time lags between stem sap flow and R_s in both female plants and male plants corresponded to plant use of stored water and were independent of total plant water use. Time lags of sap flow were always longer in male plants than in female plants. Theoretically, dry soil may decrease the speed by which sap flow adjusts ahead of shifts in VPD_(air) in comparison with wet soil and also increase the speed by which sap flow adjusts to R_s. However, sap flow lags that were associated with R_s before irrigation and after irrigation in female plants did not shift. Time series analysis method provided better results for simulating seed-maize sap flow with advantages of allowing for fewer variables to be included. This approach would be helpful in improving the accuracy of estimation for canopy transpiration and conductance using meteorological measurements.展开更多
Conditions for complete and lag synchronizations in drive-response systems are considered under the unified framework of generalized synchronization. The question is addressed that whether the synchronization conditio...Conditions for complete and lag synchronizations in drive-response systems are considered under the unified framework of generalized synchronization. The question is addressed that whether the synchronization conditions achieving complete synchronization is still valid for lag synchronization when the time delay of signal transmission between the drive and response systems increases from 0. Theoretical and numerical results show that whether the synchronization conditions is stable for the influence of the time delay of signal transmission depends on a particular form of equilibria of the drive and response systems. Furthermore, it seems that the less the number of the equilibria of the drive system, the more likely the synchronization conditions are stable for the time delay of signal trans- mission.展开更多
Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal val...Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal values. To accomplish this, a new grey incidence model, called the grey dynamic incidence model GDIM(t), is constructed for determining whether the factors are effective to the known factor and what the time lag is between a useful factor and the specified sequence. Based on the results of the GDIM(t) model, two programming problems are designed to obtain the upper and lower bounds of the unknown or abnormal values which are regarded as grey numbers. The solutions based on the particle swarm optimization(PSO) for the nonlinear programming problems are given. To explain how it can be used in practice, this new grey interpolation approach is applied to correct an abnormal value in the sequence of an agriculture environment problem.展开更多
AIM:To investigate the impact of lag time to metastasis and survival rates among patients with retinoblastoma.METHODS:This retrospective study was conducted with 52 patients from the Department of Ophthalmology and th...AIM:To investigate the impact of lag time to metastasis and survival rates among patients with retinoblastoma.METHODS:This retrospective study was conducted with 52 patients from the Department of Ophthalmology and the Department of Pediatrics of Dr.Sardjito General Hospital,between 1^(st) January 2014 and 31^(st) December 2020.Lag time was defined as the time delay between the first sign of retinoblastoma to the diagnosis of retinoblastoma.The subjects with lag time>one year were included in the case group,while the subjects with lag time<one year were included in the control group.RESULTS:The lag time was significantly correlated with American Joint Committee on Cancer and Intraocular Classification of Retinoblastoma staging of retinoblastoma(P=0.005 and P=0.006,respectively).The lag time was also significantly correlated with both metastasis event[odds ratio(OR):5.06,95%Cl:1.56-16.44,P=0.006]and mortality(OR:4.54,95%Cl:1.37-15.07,P=0.011).The follow-up was continued for 32 subjects for 3y after initial diagnoses.Survival analysis revealed a significant difference among these two groups(P=0.021).Furthermore,lag time was significantly correlated with survival of retinoblastoma(r=-0.53,P=0.046).CONCLUSION:The study highlights the importance of lag time between the onset of first symptoms and the time of retinoblastoma diagnosis which significantly contribute to metastasis and mortality of patients with retinoblastoma.Examinations for the early detection of retinoblastoma should be performed for individuals at-risk to minimize lag time and improve the outcomes.展开更多
From a time value of revenue point of view,it is preferred that the time between reservoir stimulation and oil production response is small.Heavy oil combustion processes have a lag time between air injection and liqu...From a time value of revenue point of view,it is preferred that the time between reservoir stimulation and oil production response is small.Heavy oil combustion processes have a lag time between air injection and liquid production,but the common practice in production data analysis uses simultaneous injection and production data when seeking a relationship between them.In this research,the time scales of production for the Kerrobert toe-to-heel air injection(THAI)heavy oil project in Saskatchewan,Canada,is analyzed by using cross correlation analysis,i.e.time delay analysis between air injection and oil production.The results reveal two time scales with respect to production response with two distinctive recovery mechanisms:(1)a short time scale response(nearly instantaneous)where oil production peaks right after air injection(directly after opening production well)reflecting cold heavy oil production mechanisms,and(2)a longer time scale(of order of 100-300 days)response where peak production occurs associated with the collective phenomena of air injection,heat generating reactions,heat transfer,and finally,heated mobilized heavy oil drainage to the production well.This understanding of the two time scales and associated production mechanisms provides a basis for improving the performance of THAI.展开更多
The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models a...The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.展开更多
Through introducing the concept of complex current and resetting cross-coupling term, this paper proposes a novel complex permanent magnet synchronous motor system and analyzes its properties. Based on a complex perma...Through introducing the concept of complex current and resetting cross-coupling term, this paper proposes a novel complex permanent magnet synchronous motor system and analyzes its properties. Based on a complex permanent magnet synchronous motor system, we design controllers and achieve lag synchronizations both in real part and imaginary part with backstepping method. In our study, we take complex current, time delay, and structure of complex system into consideration. Numerical simulation results demonstrate the validity of controllers.展开更多
Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacia...Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacial discharge is partly controlled by the geometry of the glacial drainage network and by the process of producing meltwater. The glacial-drainage system of some alpine glaciers has been characterized using a model based on proglacial discharge analysis. In this paper, we apply cross-correlation analysis to hourly hydro-climatic data collected from China's Hailuogou Glacier, a typical temperate glacier in Mt. Gongga, to study the seasonal status changes of the englacial and subglacial drainage systems by discharge-temperature (Q-T) time lag analy-sis. During early ablation season (April-May) of 2003, 2004 and 2005, the change of englacial and subglacial drainage system usually leads several outburst flood events, which are also substantiated by observing the leakage of supraglacial pond and cre-vasses pond water during field works in April, 2008. At the end of ablation season (October-December), the glacial-drainage net-works become less hydro-efficient. Those events are evidenced by hourly hydro-process near the terminus of Hailuogou Glacier, and the analysis of Q-T time lags also can be a good indicator of those changes. However, more detailed observations or experi-ments, e.g. dye-tracing experiment and recording borehole water level variations, are necessary to describe the evolutionary status and processes of englacial and subglacial drainage systems evolution during ablation season.展开更多
Fluorescence-based maximal photochemical efficiency, Fv/Fm, is widely used as an indicator to photosynthetic competence in marine systems. It has been considered a useful parameter diagnosing the nutrient stress on ph...Fluorescence-based maximal photochemical efficiency, Fv/Fm, is widely used as an indicator to photosynthetic competence in marine systems. It has been considered a useful parameter diagnosing the nutrient stress on phytoplankton photosynthesis, but many studies argue its usefulness. In the present study, we try to find a temporal relationship between Fv/Fm and nitrogen concentration, and provide a possible explanation on the controversy. We continuously measured Fv/Fm and nitrogen concentration once every 10 days from September 2003 to March 2004 at two stations in Jiaozhou Bay, northern China. It was found that Fv/ffm did not significantly correlate to synchronous nitrogen concentration, but the variation (i.e. the change between two adjacent cruises) of nitrogen concentration of the previous cruise and the variation ofFv/Fm of the current cruise were strongly correlated. This result indicates that a time lag exists between the variation of nutrient status and the subsequent Fv/Fm response. Length of the time lag seems just matched the interval of our measurements (10 days). In the field, direct dependence of Fv/Fm on nitrogen concentration may not be found because of the lagged response of Fv/Fm to nitrogen concentration variations or physiological acclimation. Our results provide a possible way to explain the previously reported conflicting results on the relationship between Fv/Fm and nutrient status. To give a more-accurate estimate about the length of the time lag, an investigation that includes more frequent measurements is needed.展开更多
The lag(latency)time(LT)is known in dermatology clinic as an asymptomatic period till the development of skin eruptions.In the laboratory,the LT might determine the interval from"zero"point until the peak(s)...The lag(latency)time(LT)is known in dermatology clinic as an asymptomatic period till the development of skin eruptions.In the laboratory,the LT might determine the interval from"zero"point until the peak(s)of changes in measured laboratory parameter during the performed test.This paper discusses methodological and technical aspects of precise measurement of the LT in the living healthy and pathological skin by laser and optical technologies through clinical and experimental applications in dermatology.Based on a dynamics approach to measure,calculate and interpret the LT in blood and in interstitialfluid compartments of the skin tissue,this method has a potential to promote deeper understanding of the role of complex dynamic processes in the skin at a level of a molecule,and/or an organ in a whole organism.The method of the LT measurement in vivo also promotes new understanding of(patho)physiological,diagnostic and pharmacological aspects of certain dynamic skin lesions and dynamic complex processes that happen in the skin.Utilized laser and optical techniques showed high reliability and objectivity in collecting data from rapidly changed skin lesions and processes,demonstrating the LT measurement as a very easy-to-use calculation procedure with high informativity,which is extremely important for the clinical and laboratory environment.展开更多
文摘The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.
文摘In this paper the inequality of Lemma 1 of [1] is extended. By means of our inequality and the method of Lyapunov function we study the stability of two kinds of large scale differential systems with time lag and the stability of a higher-order differential equation with time lag. The sufficient conditions for the stability (S. ), the asymptotic stability (A. S. ), the uniformly asymptotic stability (U. A. S. ) and the exponential asymptotic stability (E. A. S. ) of the zero solutions of the systems are obtained respectively.
文摘Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the Neumann problem with the quadratic performance functional are derived.
基金The Advance Research Projects of Southeast Universityfor the National Natural Science Foundation of China(No.XJ0701262)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B04,2008BAJ12B05,2006BAJ03A04)
文摘The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
基金supported by the Qinghai province natural science foundation project(2015-ZJ-902)the Qinghai province science and technology plan program(2014-NK-A4-4)
文摘Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.
基金Projects 2008ZX05009-004 supported by the National Key Sci-Tech Major Special Item2006CB705805 by the National Basic Research Program of Chinasupported by the National Basic Research Program of China and "enhanced oil recovery basic theory for low permeability reservoirs" under grant 2002CCA00700
文摘In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on permeability and porosity.The time lag effect of rock deformation illustrating the relationship between changes in permeability and steady time was studied.Permeability reduction ratios were measured under different stress loading rates which were achieved by different pump rate settings.The results show that permeability and porosity gradually decrease with increases in effective pressure.Permeability at high effective pressure attains stability quickly.Steady times at low effective pressure are very long.Reduction in permeability at lower stress loading rates is small,while,in contrast,it is large at high stress loading rates.
基金supported by the National Basic Research Program of China (973 Program: Grant No. 2010CB951902)the Special Program for China Meteorology Trade (Grant No. GYHY201306020)the Technology Support Program of China (Grant No. 2009BAC51B03)
文摘A time-lagged ensemble method is used to improve 6-15 day precipitation forecasts from the Beijing Climate Center Atmospheric General Circulation Model,version 2.0.1.The approach averages the deterministic predictions of precipitation from the most recent model run and from earlier runs,all at the same forecast valid time.This lagged average forecast (LAF) method assigns equal weight to each ensemble member and produces a forecast by taking the ensemble mean.Our analyses of the Equitable Threat Score,the Hanssen and Kuipers Score,and the frequency bias indicate that the LAF using five members at time-lagged intervals of 6 h improves 6-15 day forecasts of precipitation frequency above 1 mm d-1 and 5 mm d-1 in many regions of China,and is more effective than the LAF method with selection of the time-lagged interval of 12 or 24 h between ensemble members.In particular,significant improvements are seen over regions where the frequencies of rainfall days are higher than about 40%-50% in the summer season; these regions include northeastern and central to southern China,and the southeastem Tibetan Plateau.
基金support from the National Key Basic Research Program of China (2016YFC0400207)the National Natural Science Foundation of China (51439006, 91425302)the 111 Program of Introducing Talents of Discipline to Universities (B14002)
文摘Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its influencing factors in time lags of basal stem flow during the development of herbaceous plants including crops remain unclear. A field experiment was conducted in an arid region of Northwest China to examine the time lag characteristics of sap flow in seed-maize and to calibrate the transpiration modeling. Cross-correlation analysis was used to estimate the time lags between stem sap flow and meteorological driving factors including solar radiation(R_s) and vapor pressure deficit of the air(VPD_(air)). Results indicate that the changes in seed-maize stem sap flow consistently lagged behind the changes in R_s and preceded the changes in VPD_(air) both on hourly and daily scales, suggesting that light-mediated stomatal closures drove sap flow responses. The time lag in the maize's sap flow differed significantly during different growth stages and the difference was potentially due to developmental changes in capacitance tissue and/or xylem during ontogenesis. The time lags between stem sap flow and R_s in both female plants and male plants corresponded to plant use of stored water and were independent of total plant water use. Time lags of sap flow were always longer in male plants than in female plants. Theoretically, dry soil may decrease the speed by which sap flow adjusts ahead of shifts in VPD_(air) in comparison with wet soil and also increase the speed by which sap flow adjusts to R_s. However, sap flow lags that were associated with R_s before irrigation and after irrigation in female plants did not shift. Time series analysis method provided better results for simulating seed-maize sap flow with advantages of allowing for fewer variables to be included. This approach would be helpful in improving the accuracy of estimation for canopy transpiration and conductance using meteorological measurements.
基金supported by the National Natural Science Foundation of China(11002103 and 11032009)Shanghai Leading Academic Discipline(B302)
文摘Conditions for complete and lag synchronizations in drive-response systems are considered under the unified framework of generalized synchronization. The question is addressed that whether the synchronization conditions achieving complete synchronization is still valid for lag synchronization when the time delay of signal transmission between the drive and response systems increases from 0. Theoretical and numerical results show that whether the synchronization conditions is stable for the influence of the time delay of signal transmission depends on a particular form of equilibria of the drive and response systems. Furthermore, it seems that the less the number of the equilibria of the drive system, the more likely the synchronization conditions are stable for the time delay of signal trans- mission.
基金supported by the National Natural Science Foundation of China(7137109871071077)+4 种基金Funding of Jiangsu Innovation Program for Graduate Education(KYZZ15 0093)Fundamental Research Funds for the Central Universities(2017301)Natural Science Fund Project of Colleges in Jiangsu Province(16KJD120001)Funding for Major Project of Jiangsu Social Science(16GLA001)Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics(BCXJ15-10)
文摘Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal values. To accomplish this, a new grey incidence model, called the grey dynamic incidence model GDIM(t), is constructed for determining whether the factors are effective to the known factor and what the time lag is between a useful factor and the specified sequence. Based on the results of the GDIM(t) model, two programming problems are designed to obtain the upper and lower bounds of the unknown or abnormal values which are regarded as grey numbers. The solutions based on the particle swarm optimization(PSO) for the nonlinear programming problems are given. To explain how it can be used in practice, this new grey interpolation approach is applied to correct an abnormal value in the sequence of an agriculture environment problem.
基金Supported in part by funding from the the Teuku Jacobs Foundation Research Fellowship Program(No.#312)。
文摘AIM:To investigate the impact of lag time to metastasis and survival rates among patients with retinoblastoma.METHODS:This retrospective study was conducted with 52 patients from the Department of Ophthalmology and the Department of Pediatrics of Dr.Sardjito General Hospital,between 1^(st) January 2014 and 31^(st) December 2020.Lag time was defined as the time delay between the first sign of retinoblastoma to the diagnosis of retinoblastoma.The subjects with lag time>one year were included in the case group,while the subjects with lag time<one year were included in the control group.RESULTS:The lag time was significantly correlated with American Joint Committee on Cancer and Intraocular Classification of Retinoblastoma staging of retinoblastoma(P=0.005 and P=0.006,respectively).The lag time was also significantly correlated with both metastasis event[odds ratio(OR):5.06,95%Cl:1.56-16.44,P=0.006]and mortality(OR:4.54,95%Cl:1.37-15.07,P=0.011).The follow-up was continued for 32 subjects for 3y after initial diagnoses.Survival analysis revealed a significant difference among these two groups(P=0.021).Furthermore,lag time was significantly correlated with survival of retinoblastoma(r=-0.53,P=0.046).CONCLUSION:The study highlights the importance of lag time between the onset of first symptoms and the time of retinoblastoma diagnosis which significantly contribute to metastasis and mortality of patients with retinoblastoma.Examinations for the early detection of retinoblastoma should be performed for individuals at-risk to minimize lag time and improve the outcomes.
基金support from the Department of Chemical and Petroleum Engineering at the University of Calgary,the University of Calgary’s Canada First Research Excellence Fund program(the Global Research Initiative for Sustainable Low-Carbon Unconventional Resources)
文摘From a time value of revenue point of view,it is preferred that the time between reservoir stimulation and oil production response is small.Heavy oil combustion processes have a lag time between air injection and liquid production,but the common practice in production data analysis uses simultaneous injection and production data when seeking a relationship between them.In this research,the time scales of production for the Kerrobert toe-to-heel air injection(THAI)heavy oil project in Saskatchewan,Canada,is analyzed by using cross correlation analysis,i.e.time delay analysis between air injection and oil production.The results reveal two time scales with respect to production response with two distinctive recovery mechanisms:(1)a short time scale response(nearly instantaneous)where oil production peaks right after air injection(directly after opening production well)reflecting cold heavy oil production mechanisms,and(2)a longer time scale(of order of 100-300 days)response where peak production occurs associated with the collective phenomena of air injection,heat generating reactions,heat transfer,and finally,heated mobilized heavy oil drainage to the production well.This understanding of the two time scales and associated production mechanisms provides a basis for improving the performance of THAI.
文摘The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No. 20070141014)+2 种基金the Program for Liaoning Excellent Talents in University (GrantNo. LR2012003)the National Natural Science Foundation of China (Grant No. 20082165)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT12JB06)
文摘Through introducing the concept of complex current and resetting cross-coupling term, this paper proposes a novel complex permanent magnet synchronous motor system and analyzes its properties. Based on a complex permanent magnet synchronous motor system, we design controllers and achieve lag synchronizations both in real part and imaginary part with backstepping method. In our study, we take complex current, time delay, and structure of complex system into consideration. Numerical simulation results demonstrate the validity of controllers.
基金supported by the National Natural Science Foundation of China (Grant No. 40801030 and 40801025)the Major State Basic Research Development Program of China (973 Program) (2007CB411506)+1 种基金the Innovation Project of Chinese Academy Sciences (Kzcx2-yw-301)the National Basic Work Program of Chinese MST (Glacier Inventory of China Ⅱ, Grant No. 2006FY110200)
文摘Englacial and subglacial drainage systems of temperate glaciers have a strong influence on glacier dynamics, glacier-induced floods, glacier-weathering processes, and runoff from glacierized drainage basins. Proglacial discharge is partly controlled by the geometry of the glacial drainage network and by the process of producing meltwater. The glacial-drainage system of some alpine glaciers has been characterized using a model based on proglacial discharge analysis. In this paper, we apply cross-correlation analysis to hourly hydro-climatic data collected from China's Hailuogou Glacier, a typical temperate glacier in Mt. Gongga, to study the seasonal status changes of the englacial and subglacial drainage systems by discharge-temperature (Q-T) time lag analy-sis. During early ablation season (April-May) of 2003, 2004 and 2005, the change of englacial and subglacial drainage system usually leads several outburst flood events, which are also substantiated by observing the leakage of supraglacial pond and cre-vasses pond water during field works in April, 2008. At the end of ablation season (October-December), the glacial-drainage net-works become less hydro-efficient. Those events are evidenced by hourly hydro-process near the terminus of Hailuogou Glacier, and the analysis of Q-T time lags also can be a good indicator of those changes. However, more detailed observations or experi-ments, e.g. dye-tracing experiment and recording borehole water level variations, are necessary to describe the evolutionary status and processes of englacial and subglacial drainage systems evolution during ablation season.
基金Supported by the Public Science and Technology Research Funds of Ocean(No.200905019)the Science Foundation of Young Scientist,SOA(No.2011129)+1 种基金the Outstanding Young & Middle Scientist of Shandong Province(No.BS2010HZ018)the Taishan Scholar Fund of Aquatic Animal Nutrition and Feed to ZHANG Limin
文摘Fluorescence-based maximal photochemical efficiency, Fv/Fm, is widely used as an indicator to photosynthetic competence in marine systems. It has been considered a useful parameter diagnosing the nutrient stress on phytoplankton photosynthesis, but many studies argue its usefulness. In the present study, we try to find a temporal relationship between Fv/Fm and nitrogen concentration, and provide a possible explanation on the controversy. We continuously measured Fv/Fm and nitrogen concentration once every 10 days from September 2003 to March 2004 at two stations in Jiaozhou Bay, northern China. It was found that Fv/ffm did not significantly correlate to synchronous nitrogen concentration, but the variation (i.e. the change between two adjacent cruises) of nitrogen concentration of the previous cruise and the variation ofFv/Fm of the current cruise were strongly correlated. This result indicates that a time lag exists between the variation of nutrient status and the subsequent Fv/Fm response. Length of the time lag seems just matched the interval of our measurements (10 days). In the field, direct dependence of Fv/Fm on nitrogen concentration may not be found because of the lagged response of Fv/Fm to nitrogen concentration variations or physiological acclimation. Our results provide a possible way to explain the previously reported conflicting results on the relationship between Fv/Fm and nutrient status. To give a more-accurate estimate about the length of the time lag, an investigation that includes more frequent measurements is needed.
基金The author is grateful to Prof.Seiji Arase(retired)and Assoc.Prof.Hirotsugu Takiwaki(retired),Dr.Y.Nameda(retired),Dr.M.Sagawa(retired),Dr.Y.Miyaoka(retired)at the Dept.of Dermatology,School of Medicine,The University of TokushimaProf.M.Kanazawa from the Third Department of Internal Medicine at Tokyo Medical UniversityProf.Takayuki Sota,Dr.A.Nakamura and Prof.Katsuo Aizawa(retired)from the Dept.of Electrical Engineering and Bioscience at Waseda University,Tokyo,Japan.N.S.E.is also grateful to JSPS(Japan Society for Promotion and Science)for their acceptance andfinancial support as a postdoctoral fellow between 2006 and 2008.She also acknowledgesfinancial support from the Japanese Ministry of Education(Monbusho)as a Ph.D.student between 1999 and 2002.
文摘The lag(latency)time(LT)is known in dermatology clinic as an asymptomatic period till the development of skin eruptions.In the laboratory,the LT might determine the interval from"zero"point until the peak(s)of changes in measured laboratory parameter during the performed test.This paper discusses methodological and technical aspects of precise measurement of the LT in the living healthy and pathological skin by laser and optical technologies through clinical and experimental applications in dermatology.Based on a dynamics approach to measure,calculate and interpret the LT in blood and in interstitialfluid compartments of the skin tissue,this method has a potential to promote deeper understanding of the role of complex dynamic processes in the skin at a level of a molecule,and/or an organ in a whole organism.The method of the LT measurement in vivo also promotes new understanding of(patho)physiological,diagnostic and pharmacological aspects of certain dynamic skin lesions and dynamic complex processes that happen in the skin.Utilized laser and optical techniques showed high reliability and objectivity in collecting data from rapidly changed skin lesions and processes,demonstrating the LT measurement as a very easy-to-use calculation procedure with high informativity,which is extremely important for the clinical and laboratory environment.