The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ...The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.展开更多
The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models a...The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.展开更多
Purpose:Recently,global science has shown an increasing open trend,however,the characteristics of research integrity of open access(OA)publications have rarely been studied.The aim of this study is to compare the char...Purpose:Recently,global science has shown an increasing open trend,however,the characteristics of research integrity of open access(OA)publications have rarely been studied.The aim of this study is to compare the characteristics of retracted articles across different OA levels and discover whether OA level influences the characteristics of retracted articles.Design/methodology/approach:The research conducted an analysis of 6,005 retracted publications between 2001 and 2020 from the Web of Science and Retraction Watch databases.These publications were categorized based on their OA levels,including Gold OA,Green OA,and non-OA.The study explored retraction rates,time lags and reasons within these categories.Findings:The findings of this research revealed distinct patterns in retraction rates among different OA levels.Publications with Gold OA demonstrated the highest retraction rate,followed by Green OA and non-OA.A comparison of retraction reasons between Gold OA and non-OA categories indicated similar proportions,while Green OA exhibited a higher proportion due to falsification and manipulation issues,along with a lower occurrence of plagiarism and authorship issues.The retraction time lag was shortest for Gold OA,followed by non-OA,and longest for Green OA.The prolonged retraction time for Green OA could be attributed to an atypical distribution of retraction reasons.A comparative study on characteristics of retracted publications across different open access levels Research limitations:There is no exploration of a wider range of OA levels,such as Hybrid OA and Bronze OA.Practical implications:The outcomes of this study suggest the need for increased attention to research integrity within the OA publications.The occurrences offalsification,manipulation,and ethical concerns within Green OA publications warrant attention from the scientific community.Originality/value:This study contributes to the understanding of research integrity in the realm of OA publications,shedding light on retraction patterns and reasons across different OA levels.展开更多
The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the ...The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.展开更多
This experimental study is a contribution to the search for solutions to reduce indoor heat gain through sheet metal roofing in hot weather. It has evaluated the thermal impact of two different sheet metal roofs insid...This experimental study is a contribution to the search for solutions to reduce indoor heat gain through sheet metal roofing in hot weather. It has evaluated the thermal impact of two different sheet metal roofs inside of two identical test buildings in sunny weather and cloudy weather conditions. Test building 1 has a single sheet corrugated roof and the building 2 is covered with roof made from top to bottom with corrugated sheet metal, a 12 mm thick serpentine copper tube in which water is circulated, a sheet of aluminium foil acting as a heat reflector, a 4 cm thick polystyrene panel and a 1.5 cm thick plywood. A maximum reduction of 15.1˚C in the temperature of the inner face of the test Building 2 roof was obtained comparatively to the temperature of the inner face of the test Building 1 roof consisting of a single sheet of metal at the warmest hours. In addition, the simple corrugated sheet metal roof of the test building generates high and varied temperatures inside the building. Whereas the proposed heat recovery roof favours low and relatively uniform temperatures inside the building. The proposed sheet metal roof construction technique is very effective in reducing the heat gain through the roof considerably;thus improving the thermal comfort inside sheet metal roofed dwellings. Hot water has been produced by recovering heat from the metal sheet of the roof of test building 2. The temperature of the hot water produced reached of 39˚C. This study could be also an alternative for the reduction of energy consumption due to the use of mechanical means for cooling of sheet metal roofed houses and the reduction of the use of fossil fuels for domestic hot water production.展开更多
Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend an...Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.展开更多
Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to...Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.展开更多
In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on ...In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on permeability and porosity.The time lag effect of rock deformation illustrating the relationship between changes in permeability and steady time was studied.Permeability reduction ratios were measured under different stress loading rates which were achieved by different pump rate settings.The results show that permeability and porosity gradually decrease with increases in effective pressure.Permeability at high effective pressure attains stability quickly.Steady times at low effective pressure are very long.Reduction in permeability at lower stress loading rates is small,while,in contrast,it is large at high stress loading rates.展开更多
Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its infl...Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its influencing factors in time lags of basal stem flow during the development of herbaceous plants including crops remain unclear. A field experiment was conducted in an arid region of Northwest China to examine the time lag characteristics of sap flow in seed-maize and to calibrate the transpiration modeling. Cross-correlation analysis was used to estimate the time lags between stem sap flow and meteorological driving factors including solar radiation(R_s) and vapor pressure deficit of the air(VPD_(air)). Results indicate that the changes in seed-maize stem sap flow consistently lagged behind the changes in R_s and preceded the changes in VPD_(air) both on hourly and daily scales, suggesting that light-mediated stomatal closures drove sap flow responses. The time lag in the maize's sap flow differed significantly during different growth stages and the difference was potentially due to developmental changes in capacitance tissue and/or xylem during ontogenesis. The time lags between stem sap flow and R_s in both female plants and male plants corresponded to plant use of stored water and were independent of total plant water use. Time lags of sap flow were always longer in male plants than in female plants. Theoretically, dry soil may decrease the speed by which sap flow adjusts ahead of shifts in VPD_(air) in comparison with wet soil and also increase the speed by which sap flow adjusts to R_s. However, sap flow lags that were associated with R_s before irrigation and after irrigation in female plants did not shift. Time series analysis method provided better results for simulating seed-maize sap flow with advantages of allowing for fewer variables to be included. This approach would be helpful in improving the accuracy of estimation for canopy transpiration and conductance using meteorological measurements.展开更多
In this paper the inequality of Lemma 1 of [1] is extended. By means of our inequality and the method of Lyapunov function we study the stability of two kinds of large scale differential systems with time lag and the ...In this paper the inequality of Lemma 1 of [1] is extended. By means of our inequality and the method of Lyapunov function we study the stability of two kinds of large scale differential systems with time lag and the stability of a higher-order differential equation with time lag. The sufficient conditions for the stability (S. ), the asymptotic stability (A. S. ), the uniformly asymptotic stability (U. A. S. ) and the exponential asymptotic stability (E. A. S. ) of the zero solutions of the systems are obtained respectively.展开更多
Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal val...Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal values. To accomplish this, a new grey incidence model, called the grey dynamic incidence model GDIM(t), is constructed for determining whether the factors are effective to the known factor and what the time lag is between a useful factor and the specified sequence. Based on the results of the GDIM(t) model, two programming problems are designed to obtain the upper and lower bounds of the unknown or abnormal values which are regarded as grey numbers. The solutions based on the particle swarm optimization(PSO) for the nonlinear programming problems are given. To explain how it can be used in practice, this new grey interpolation approach is applied to correct an abnormal value in the sequence of an agriculture environment problem.展开更多
AIM:To investigate the impact of lag time to metastasis and survival rates among patients with retinoblastoma.METHODS:This retrospective study was conducted with 52 patients from the Department of Ophthalmology and th...AIM:To investigate the impact of lag time to metastasis and survival rates among patients with retinoblastoma.METHODS:This retrospective study was conducted with 52 patients from the Department of Ophthalmology and the Department of Pediatrics of Dr.Sardjito General Hospital,between 1^(st) January 2014 and 31^(st) December 2020.Lag time was defined as the time delay between the first sign of retinoblastoma to the diagnosis of retinoblastoma.The subjects with lag time>one year were included in the case group,while the subjects with lag time<one year were included in the control group.RESULTS:The lag time was significantly correlated with American Joint Committee on Cancer and Intraocular Classification of Retinoblastoma staging of retinoblastoma(P=0.005 and P=0.006,respectively).The lag time was also significantly correlated with both metastasis event[odds ratio(OR):5.06,95%Cl:1.56-16.44,P=0.006]and mortality(OR:4.54,95%Cl:1.37-15.07,P=0.011).The follow-up was continued for 32 subjects for 3y after initial diagnoses.Survival analysis revealed a significant difference among these two groups(P=0.021).Furthermore,lag time was significantly correlated with survival of retinoblastoma(r=-0.53,P=0.046).CONCLUSION:The study highlights the importance of lag time between the onset of first symptoms and the time of retinoblastoma diagnosis which significantly contribute to metastasis and mortality of patients with retinoblastoma.Examinations for the early detection of retinoblastoma should be performed for individuals at-risk to minimize lag time and improve the outcomes.展开更多
From a time value of revenue point of view,it is preferred that the time between reservoir stimulation and oil production response is small.Heavy oil combustion processes have a lag time between air injection and liqu...From a time value of revenue point of view,it is preferred that the time between reservoir stimulation and oil production response is small.Heavy oil combustion processes have a lag time between air injection and liquid production,but the common practice in production data analysis uses simultaneous injection and production data when seeking a relationship between them.In this research,the time scales of production for the Kerrobert toe-to-heel air injection(THAI)heavy oil project in Saskatchewan,Canada,is analyzed by using cross correlation analysis,i.e.time delay analysis between air injection and oil production.The results reveal two time scales with respect to production response with two distinctive recovery mechanisms:(1)a short time scale response(nearly instantaneous)where oil production peaks right after air injection(directly after opening production well)reflecting cold heavy oil production mechanisms,and(2)a longer time scale(of order of 100-300 days)response where peak production occurs associated with the collective phenomena of air injection,heat generating reactions,heat transfer,and finally,heated mobilized heavy oil drainage to the production well.This understanding of the two time scales and associated production mechanisms provides a basis for improving the performance of THAI.展开更多
The lag(latency)time(LT)is known in dermatology clinic as an asymptomatic period till the development of skin eruptions.In the laboratory,the LT might determine the interval from"zero"point until the peak(s)...The lag(latency)time(LT)is known in dermatology clinic as an asymptomatic period till the development of skin eruptions.In the laboratory,the LT might determine the interval from"zero"point until the peak(s)of changes in measured laboratory parameter during the performed test.This paper discusses methodological and technical aspects of precise measurement of the LT in the living healthy and pathological skin by laser and optical technologies through clinical and experimental applications in dermatology.Based on a dynamics approach to measure,calculate and interpret the LT in blood and in interstitialfluid compartments of the skin tissue,this method has a potential to promote deeper understanding of the role of complex dynamic processes in the skin at a level of a molecule,and/or an organ in a whole organism.The method of the LT measurement in vivo also promotes new understanding of(patho)physiological,diagnostic and pharmacological aspects of certain dynamic skin lesions and dynamic complex processes that happen in the skin.Utilized laser and optical techniques showed high reliability and objectivity in collecting data from rapidly changed skin lesions and processes,demonstrating the LT measurement as a very easy-to-use calculation procedure with high informativity,which is extremely important for the clinical and laboratory environment.展开更多
This study analyzes the know-how of local communities, to draw on techniques that make contemporary buildings more energy efficient. The impluvium hut in the locality of Enampore, Casamance, Southern Senegal, served a...This study analyzes the know-how of local communities, to draw on techniques that make contemporary buildings more energy efficient. The impluvium hut in the locality of Enampore, Casamance, Southern Senegal, served as the object of study. The hut, including several rooms, is entirely built with earthen walls, earthen floor, earthen ceiling, covered by a double straw roof and its central courtyard. A room noted (L) and a semi-opened living space were chosen as spaces for hygro-thermal experimentation. The hottest average temperature obtained respectively in the room (L) and in the living space is 25.5˚C and 27˚C when outside is about 34˚C. The thermal amplitude inside room (L) is 0.88˚C, in semi-opened living space, is 2.6˚C and outside is 9.5˚C. With these results we can say that room (L) undergoes very low temperature variations and that there is no need to air-condition in the enclosure. The thermal amplitude makes it possible to see the influence of the earthen walls on the interior temperature and its regularity compared to the fluctuation of the external temperature. The thermal inertia of the building walls was characterized using also the time lag and the decrement factor. They was respectively 7.0 H and 0.093 for the room (L). With this result we can say that this material has a high thermal inertia. For humidity, it is high around 78.5% in the room (L), 66.0% at the semi-open living room, when it is 59.0% outside. Through this study, it is possible that the revalorization of vernacular architecture can be an alternative to reduce the energy consumption of buildings.展开更多
Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the S...Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China. The results indicate that as a whole, the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China. Vegetation NDVI maximally responds to the variation of temperature with a lag of about 10 days, and it maximally responds to the variation of precipitation with a lag of about 30 days. The response of vegetation NDVI to temperature and precipitation is most pronounced in autumn, and has the longest lag in summer. Spatially, the maximum response of vegetation NDVI to the variation of temperature is more pronounced in the northern and middle parts than in the southern part of eastern China. The maximum response of vegetation NDVI to the variation of precipitation is more pronounced in the northern part than in the middle and southern parts of eastern China. The response of vegetation NDVI to the variation of temperature has longer lag in the northern and southern parts than in the middle part of eastern China. The response of vegetation NDVl to the variation of precipitation has the longest lag in the southern part, and the shortest lag in the northern part of eastern China. The response of vegetation NDVI to the variation of temperature and precipitation in eastern China is mainly consistent with other results, but the lag time of vegetation NDVI to the variation of temperature and precipitation has some differences with those results of the monsoon region of eastern China.展开更多
The normalized difference vegetation index (NDVI) has proven to be typically employed to assess terrestrial vegetation conditions. However, one limitation of NDVI for drought monitoring is the apparent time lag betw...The normalized difference vegetation index (NDVI) has proven to be typically employed to assess terrestrial vegetation conditions. However, one limitation of NDVI for drought monitoring is the apparent time lag between rainfall deficit and NDVI response. To better understand this relationship, time series NDVI (2000-2010) during the growing season in Sichuan Province and Chongqing City were analyzed. The vegetation condition index (VCI) was used to construct a new drought index, time-integrated vegetation condition index (TIVCI), and was then compared with meteorological drought indices-standardized precipitation index (SPI), a multiple-time scale meteorological-drought index based on precipitation, to examine the sensitivity on droughts. Our research findings indicate the followings: (1) farmland NDVI sensitivity to precipitation in study area has a time lag of 16-24 d, and it maximally responds to the temperature with a lag of about 16 d. (2) We applied the approach to Sichuan Province and Chongqing City for extreme drought monitoring in 2006 and 2003, and the results show that the monitoring results from TIVCI are closer to the published China agricultural statistical data than VCI. Compared to VCI, the best results from TIVCI3 were found with the relative errors of -4.5 and 6.36% in 2006 for drought affected area and drought disaster area respectively, and 5.11 and -5.95% in 2003. (3) Compared to VCI, TIVCI has better correlation with the SPI, which indicates the lag and cumulative effects of precipitation on vegetation. Our finding proved that TIVCI is an effective indicator of drought detection when the time lag effects between NDVI and climate factors are taken into consideration.展开更多
It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with significance tests as per the Bernoulli probability model. Therefore, both the contemporaneous and la...It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with significance tests as per the Bernoulli probability model. Therefore, both the contemporaneous and lag correlations of summertime precipitation R in any one of the three regions of Northern China (NC), the Changjiang-Huaihe River Valley (CHRV), and Southern China (SC) with the SSTA in the global domain have been tested in the present article, using our significance test method and the method proposed by Livezey and Chen (1983) respectively. Our results demonstrate that the contemporaneous correlations of sum- mer R in CHRV with the SSTA are larger than those in NC. Significant correlations of SSTA with CHRV R are found to be in some warm SST regions in the tropics, whereas those of SSTA with NC R, which are opposite in sign as compared to the SSTA-CHRVR correlations, are found to be in some regions where the mean SSTs are low. In comparison with the patterns of the contemporaneous correlations, the 1 to 12 month lag correlations between NC R and SSTA, and those between CHRV summer R and SSTA show similar patterns, including the magnitudes and signs, and the spatial distributions of the coefficients. However, the summer rainfall in SC is not well correlated with the SSTA, no matter how long the lag interval is. The results derived from the observations have set up a relationship frame connecting the precipitation anomalies in NC, CHRV, and SC with the SSTA in the global domain, which is critically useful for our understanding and predicting the climate variabilities in different parts of China. Both NC and CHRV summer R are connected with E1 Nifio events, showing a ‘- -'pattern in an E1 Nifio year and a‘+ +' pattern in the subsequent year. Key words summer precipitation; eastern China; global sea surface展开更多
Throughout the service life, underground structures are subjected to transient and sustained hydrostatic pressures. The reservoir impoundment results in an increase in water level, as well as hydraulic gradient,which ...Throughout the service life, underground structures are subjected to transient and sustained hydrostatic pressures. The reservoir impoundment results in an increase in water level, as well as hydraulic gradient,which can endanger the uplift performance of infrastructure. In uplift design, a reduction factor is often suggested for buoyant force acting on underground structures in clays due to the time lag effect.However, the mechanism of pore pressure generation in clays is not fully understood. This investigation presents a novel U-shaped test chamber to assess the pore pressure generation with time in the horizontal branch subjected to an increase in reservoir level in the left vertical branch. A mathematical model is developed to explain the time lag effect of pore pressure generation. The test program also involves the evaluation of uplift pressure acting on foundation model in the right vertical branch due to adjacent reservoir impoundment. It is found that the time lag effect of pore pressure generation in clays can be observed irrespective of hydraulic gradient, but a higher hydraulic gradient can lead to a faster response in pore pressure sensors. A reduction factor of 0.84-0.87 should be considered to reduce the conservatism of uplift design.展开更多
Some key operation variables influencing hot metal silicon content were selected, and time lag of each of them was obtained. A standardized fuzzy system model was developed to approach the random nonlinear dynamic sys...Some key operation variables influencing hot metal silicon content were selected, and time lag of each of them was obtained. A standardized fuzzy system model was developed to approach the random nonlinear dynamic system of the change of silicon content, forecast the change of silicon content and calculate silicon content. The prediction of hot metal silicon content is very successful with the data collected online from BF No. 1 at Laiwu Iron and Steel Group Co.展开更多
文摘The temperature change and rate of CO2 change are correlated with a time lag, as reported in a previous paper. The correlation was investigated by calculating a correlation coefficient r of these changes for selected ENSO events in this study. Annual periodical increases and decreases in the CO2 concentration were considered, with a regular pattern of minimum values in August and maximum values in May each year. An increased deviation in CO2 and temperature was found in response to the occurrence of El Niño, but the increase in CO2 lagged behind the change in temperature by 5 months. This pattern was not observed for La Niña events. An increase in global CO2 emissions and a subsequent increase in global temperature proposed by IPCC were not observed, but an increase in global temperature, an increase in soil respiration, and a subsequent increase in global CO2 emissions were noticed. This natural process can be clearly detected during periods of increasing temperature specifically during El Niño events. The results cast strong doubts that anthropogenic CO2 is the cause of global warming.
文摘The development of accurate prediction models continues to be highly beneficial in myriad disciplines. Deep learning models have performed well in stock price prediction and give high accuracy. However, these models are largely affected by the vanishing gradient problem escalated by some activation functions. This study proposes the use of the Vanishing Gradient Resilient Optimized Gated Recurrent Unit (OGRU) model with a scaled mean Approximation Coefficient (AC) time lag which should counter slow convergence, vanishing gradient and large error metrics. This study employed the Rectified Linear Unit (ReLU), Hyperbolic Tangent (Tanh), Sigmoid and Exponential Linear Unit (ELU) activation functions. Real-life datasets including the daily Apple and 5-minute Netflix closing stock prices were used, and they were decomposed using the Stationary Wavelet Transform (SWT). The decomposed series formed a decomposed data model which was compared to an undecomposed data model with similar hyperparameters and different default lags. The Apple daily dataset performed well with a Default_1 lag, using an undecomposed data model and the ReLU, attaining 0.01312, 0.00854 and 3.67 minutes for RMSE, MAE and runtime. The Netflix data performed best with the MeanAC_42 lag, using decomposed data model and the ELU achieving 0.00620, 0.00487 and 3.01 minutes for the same metrics.
基金the National Social Science Foundation of China(No.22CTQ032).
文摘Purpose:Recently,global science has shown an increasing open trend,however,the characteristics of research integrity of open access(OA)publications have rarely been studied.The aim of this study is to compare the characteristics of retracted articles across different OA levels and discover whether OA level influences the characteristics of retracted articles.Design/methodology/approach:The research conducted an analysis of 6,005 retracted publications between 2001 and 2020 from the Web of Science and Retraction Watch databases.These publications were categorized based on their OA levels,including Gold OA,Green OA,and non-OA.The study explored retraction rates,time lags and reasons within these categories.Findings:The findings of this research revealed distinct patterns in retraction rates among different OA levels.Publications with Gold OA demonstrated the highest retraction rate,followed by Green OA and non-OA.A comparison of retraction reasons between Gold OA and non-OA categories indicated similar proportions,while Green OA exhibited a higher proportion due to falsification and manipulation issues,along with a lower occurrence of plagiarism and authorship issues.The retraction time lag was shortest for Gold OA,followed by non-OA,and longest for Green OA.The prolonged retraction time for Green OA could be attributed to an atypical distribution of retraction reasons.A comparative study on characteristics of retracted publications across different open access levels Research limitations:There is no exploration of a wider range of OA levels,such as Hybrid OA and Bronze OA.Practical implications:The outcomes of this study suggest the need for increased attention to research integrity within the OA publications.The occurrences offalsification,manipulation,and ethical concerns within Green OA publications warrant attention from the scientific community.Originality/value:This study contributes to the understanding of research integrity in the realm of OA publications,shedding light on retraction patterns and reasons across different OA levels.
基金The Advance Research Projects of Southeast Universityfor the National Natural Science Foundation of China(No.XJ0701262)the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B04,2008BAJ12B05,2006BAJ03A04)
文摘The field measurements of decay rates and time lags of heat conduction in a building construction taken in Nanjing during the summer of 2001 are presented.The decay rates and time lags are calculated according to the frequency responses of the heat absorbed by the room's internal surfaces,inside surface temperature,indoor air temperature and outdoor synthetic temperature.The measured results match very well with the theoretical results of the zeroth and the first order values of the decay rates and time lags of heat conduction in the building construction,but the difference between the measured values and the theoretical values for the second order is too great to be accepted.It is therefore difficult to accurately test the second order value.However,it is still advisable to complete the analysis using the zeroth-and the first-orders values of the decay rates and time lags of heat conduction in building construction under field conditions,because in these cases the decay rates of heat conduction reach twenty which meets the requirements of engineering plans.
文摘This experimental study is a contribution to the search for solutions to reduce indoor heat gain through sheet metal roofing in hot weather. It has evaluated the thermal impact of two different sheet metal roofs inside of two identical test buildings in sunny weather and cloudy weather conditions. Test building 1 has a single sheet corrugated roof and the building 2 is covered with roof made from top to bottom with corrugated sheet metal, a 12 mm thick serpentine copper tube in which water is circulated, a sheet of aluminium foil acting as a heat reflector, a 4 cm thick polystyrene panel and a 1.5 cm thick plywood. A maximum reduction of 15.1˚C in the temperature of the inner face of the test Building 2 roof was obtained comparatively to the temperature of the inner face of the test Building 1 roof consisting of a single sheet of metal at the warmest hours. In addition, the simple corrugated sheet metal roof of the test building generates high and varied temperatures inside the building. Whereas the proposed heat recovery roof favours low and relatively uniform temperatures inside the building. The proposed sheet metal roof construction technique is very effective in reducing the heat gain through the roof considerably;thus improving the thermal comfort inside sheet metal roofed dwellings. Hot water has been produced by recovering heat from the metal sheet of the roof of test building 2. The temperature of the hot water produced reached of 39˚C. This study could be also an alternative for the reduction of energy consumption due to the use of mechanical means for cooling of sheet metal roofed houses and the reduction of the use of fossil fuels for domestic hot water production.
基金supported by the National Natural Science Foundation of China(Grant No.51709021)the Open Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2016491111)
文摘Affected by external environmental factors and evolution of dam performance, dam seepage behavior shows nonlinear time-varying characteristics. In this study, to predict and evaluate the long-term development trend and short-term fluctuation of the dam seepage behavior, two monitoring models were developed, one for the base flow effect and one for daily variation of dam seepage elements. In the first model, to avoid the influence of the time lag effect on the evaluation of seepage variation with the time effect component of seepage elements, the base values of the seepage element and the reservoir water level were extracted using the wavelet multi-resolution analysis method, and the time effect component was separated by the established base flow effect monitoring model. For the development of the daily variation monitoring model for dam seepage elements, all the previous factors, of which the measured time series prior to the dam seepage element monitoring time may have certain influence on the monitored results, were considered. Those factors that were positively correlated with the analyzed seepage element were initially considered to be the support vector machine(SVM) model input factors, and then the SVM kernel function-based sensitivity analysis was performed to optimize the input factor set and establish the optimized daily variation SVM model. The efficiency and rationality of the two models were verified by case studies of the water level of two piezometric tubes buried under the slope of a concrete gravity dam.Sensitivity analysis of the optimized SVM model shows that the influences of the daily variation of the upstream reservoir water level and rainfall on the daily variation of piezometric tube water level are processes subject to normal distribution.
基金supported by the Qinghai province natural science foundation project(2015-ZJ-902)the Qinghai province science and technology plan program(2014-NK-A4-4)
文摘Recently, canopy transpiration (Ec) has been often estimated by xylem sap-flow measurements. However, there is a significant time lag between sap flow measured at the base of the stem and canopy transpiration due to the capacitive exchange between the transpiration stream and stem water storage. Significant errors will be introduced in canopy conductance (gc) and canopy transpiration estimation if the time lag is neglected. In this study, a cross-correlation analysis was used to quantify the time lag, and the sap flowbased transpiration was measured to pararneterize Jarvistype models of gc and thus to simulate Ec of Populus cathayana using the Penman-Monteith equation. The results indicate that solar radiation (Rs) and vapor pressure deficit (VPD) are not fully coincident with sap flow and have an obvious lag effect; the sap flow lags behind Rs and precedes VPD, and there is a 1-h time shift between Eo and sap flow in the 30-min interval data set. A parameterized Jarvis-type gc model is suitable to predict P. cathayana transpiration and explains more than 80% of the variation observed in go, and the relative error was less than 25%, which shows a preferable simulation effect. The root mean square error (RMSEs) between the predicted and measured Ec were 1.91×10^-3 (with the time lag) and 3.12×10^-3cm h^-1 (without the time lag). More importantly, Ec simulation precision that incorporates time lag is improved by 6% compared to the results without the time lag, with the mean relative error (MRE) of only 8.32% and the mean absolute error (MAE) of 1.48 × 10^-3 cm h^-1.
基金Projects 2008ZX05009-004 supported by the National Key Sci-Tech Major Special Item2006CB705805 by the National Basic Research Program of Chinasupported by the National Basic Research Program of China and "enhanced oil recovery basic theory for low permeability reservoirs" under grant 2002CCA00700
文摘In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on permeability and porosity.The time lag effect of rock deformation illustrating the relationship between changes in permeability and steady time was studied.Permeability reduction ratios were measured under different stress loading rates which were achieved by different pump rate settings.The results show that permeability and porosity gradually decrease with increases in effective pressure.Permeability at high effective pressure attains stability quickly.Steady times at low effective pressure are very long.Reduction in permeability at lower stress loading rates is small,while,in contrast,it is large at high stress loading rates.
基金support from the National Key Basic Research Program of China (2016YFC0400207)the National Natural Science Foundation of China (51439006, 91425302)the 111 Program of Introducing Talents of Discipline to Universities (B14002)
文摘Plant capacity for water storage leads to time lags between basal stem sap flow and transpiration in various woody plants. Internal water storage depends on the sizes of woody plants. However, the changes and its influencing factors in time lags of basal stem flow during the development of herbaceous plants including crops remain unclear. A field experiment was conducted in an arid region of Northwest China to examine the time lag characteristics of sap flow in seed-maize and to calibrate the transpiration modeling. Cross-correlation analysis was used to estimate the time lags between stem sap flow and meteorological driving factors including solar radiation(R_s) and vapor pressure deficit of the air(VPD_(air)). Results indicate that the changes in seed-maize stem sap flow consistently lagged behind the changes in R_s and preceded the changes in VPD_(air) both on hourly and daily scales, suggesting that light-mediated stomatal closures drove sap flow responses. The time lag in the maize's sap flow differed significantly during different growth stages and the difference was potentially due to developmental changes in capacitance tissue and/or xylem during ontogenesis. The time lags between stem sap flow and R_s in both female plants and male plants corresponded to plant use of stored water and were independent of total plant water use. Time lags of sap flow were always longer in male plants than in female plants. Theoretically, dry soil may decrease the speed by which sap flow adjusts ahead of shifts in VPD_(air) in comparison with wet soil and also increase the speed by which sap flow adjusts to R_s. However, sap flow lags that were associated with R_s before irrigation and after irrigation in female plants did not shift. Time series analysis method provided better results for simulating seed-maize sap flow with advantages of allowing for fewer variables to be included. This approach would be helpful in improving the accuracy of estimation for canopy transpiration and conductance using meteorological measurements.
文摘In this paper the inequality of Lemma 1 of [1] is extended. By means of our inequality and the method of Lyapunov function we study the stability of two kinds of large scale differential systems with time lag and the stability of a higher-order differential equation with time lag. The sufficient conditions for the stability (S. ), the asymptotic stability (A. S. ), the uniformly asymptotic stability (U. A. S. ) and the exponential asymptotic stability (E. A. S. ) of the zero solutions of the systems are obtained respectively.
基金supported by the National Natural Science Foundation of China(7137109871071077)+4 种基金Funding of Jiangsu Innovation Program for Graduate Education(KYZZ15 0093)Fundamental Research Funds for the Central Universities(2017301)Natural Science Fund Project of Colleges in Jiangsu Province(16KJD120001)Funding for Major Project of Jiangsu Social Science(16GLA001)Funding for Outstanding Doctoral Dissertation in Nanjing University of Aeronautics and Astronautics(BCXJ15-10)
文摘Given a non-equidistant sequence or an equidistant series with one or more outliers, a grey interpolation approach considering the time lags is established for producing the missing data or correcting the abnormal values. To accomplish this, a new grey incidence model, called the grey dynamic incidence model GDIM(t), is constructed for determining whether the factors are effective to the known factor and what the time lag is between a useful factor and the specified sequence. Based on the results of the GDIM(t) model, two programming problems are designed to obtain the upper and lower bounds of the unknown or abnormal values which are regarded as grey numbers. The solutions based on the particle swarm optimization(PSO) for the nonlinear programming problems are given. To explain how it can be used in practice, this new grey interpolation approach is applied to correct an abnormal value in the sequence of an agriculture environment problem.
基金Supported in part by funding from the the Teuku Jacobs Foundation Research Fellowship Program(No.#312)。
文摘AIM:To investigate the impact of lag time to metastasis and survival rates among patients with retinoblastoma.METHODS:This retrospective study was conducted with 52 patients from the Department of Ophthalmology and the Department of Pediatrics of Dr.Sardjito General Hospital,between 1^(st) January 2014 and 31^(st) December 2020.Lag time was defined as the time delay between the first sign of retinoblastoma to the diagnosis of retinoblastoma.The subjects with lag time>one year were included in the case group,while the subjects with lag time<one year were included in the control group.RESULTS:The lag time was significantly correlated with American Joint Committee on Cancer and Intraocular Classification of Retinoblastoma staging of retinoblastoma(P=0.005 and P=0.006,respectively).The lag time was also significantly correlated with both metastasis event[odds ratio(OR):5.06,95%Cl:1.56-16.44,P=0.006]and mortality(OR:4.54,95%Cl:1.37-15.07,P=0.011).The follow-up was continued for 32 subjects for 3y after initial diagnoses.Survival analysis revealed a significant difference among these two groups(P=0.021).Furthermore,lag time was significantly correlated with survival of retinoblastoma(r=-0.53,P=0.046).CONCLUSION:The study highlights the importance of lag time between the onset of first symptoms and the time of retinoblastoma diagnosis which significantly contribute to metastasis and mortality of patients with retinoblastoma.Examinations for the early detection of retinoblastoma should be performed for individuals at-risk to minimize lag time and improve the outcomes.
基金support from the Department of Chemical and Petroleum Engineering at the University of Calgary,the University of Calgary’s Canada First Research Excellence Fund program(the Global Research Initiative for Sustainable Low-Carbon Unconventional Resources)
文摘From a time value of revenue point of view,it is preferred that the time between reservoir stimulation and oil production response is small.Heavy oil combustion processes have a lag time between air injection and liquid production,but the common practice in production data analysis uses simultaneous injection and production data when seeking a relationship between them.In this research,the time scales of production for the Kerrobert toe-to-heel air injection(THAI)heavy oil project in Saskatchewan,Canada,is analyzed by using cross correlation analysis,i.e.time delay analysis between air injection and oil production.The results reveal two time scales with respect to production response with two distinctive recovery mechanisms:(1)a short time scale response(nearly instantaneous)where oil production peaks right after air injection(directly after opening production well)reflecting cold heavy oil production mechanisms,and(2)a longer time scale(of order of 100-300 days)response where peak production occurs associated with the collective phenomena of air injection,heat generating reactions,heat transfer,and finally,heated mobilized heavy oil drainage to the production well.This understanding of the two time scales and associated production mechanisms provides a basis for improving the performance of THAI.
基金The author is grateful to Prof.Seiji Arase(retired)and Assoc.Prof.Hirotsugu Takiwaki(retired),Dr.Y.Nameda(retired),Dr.M.Sagawa(retired),Dr.Y.Miyaoka(retired)at the Dept.of Dermatology,School of Medicine,The University of TokushimaProf.M.Kanazawa from the Third Department of Internal Medicine at Tokyo Medical UniversityProf.Takayuki Sota,Dr.A.Nakamura and Prof.Katsuo Aizawa(retired)from the Dept.of Electrical Engineering and Bioscience at Waseda University,Tokyo,Japan.N.S.E.is also grateful to JSPS(Japan Society for Promotion and Science)for their acceptance andfinancial support as a postdoctoral fellow between 2006 and 2008.She also acknowledgesfinancial support from the Japanese Ministry of Education(Monbusho)as a Ph.D.student between 1999 and 2002.
文摘The lag(latency)time(LT)is known in dermatology clinic as an asymptomatic period till the development of skin eruptions.In the laboratory,the LT might determine the interval from"zero"point until the peak(s)of changes in measured laboratory parameter during the performed test.This paper discusses methodological and technical aspects of precise measurement of the LT in the living healthy and pathological skin by laser and optical technologies through clinical and experimental applications in dermatology.Based on a dynamics approach to measure,calculate and interpret the LT in blood and in interstitialfluid compartments of the skin tissue,this method has a potential to promote deeper understanding of the role of complex dynamic processes in the skin at a level of a molecule,and/or an organ in a whole organism.The method of the LT measurement in vivo also promotes new understanding of(patho)physiological,diagnostic and pharmacological aspects of certain dynamic skin lesions and dynamic complex processes that happen in the skin.Utilized laser and optical techniques showed high reliability and objectivity in collecting data from rapidly changed skin lesions and processes,demonstrating the LT measurement as a very easy-to-use calculation procedure with high informativity,which is extremely important for the clinical and laboratory environment.
文摘This study analyzes the know-how of local communities, to draw on techniques that make contemporary buildings more energy efficient. The impluvium hut in the locality of Enampore, Casamance, Southern Senegal, served as the object of study. The hut, including several rooms, is entirely built with earthen walls, earthen floor, earthen ceiling, covered by a double straw roof and its central courtyard. A room noted (L) and a semi-opened living space were chosen as spaces for hygro-thermal experimentation. The hottest average temperature obtained respectively in the room (L) and in the living space is 25.5˚C and 27˚C when outside is about 34˚C. The thermal amplitude inside room (L) is 0.88˚C, in semi-opened living space, is 2.6˚C and outside is 9.5˚C. With these results we can say that room (L) undergoes very low temperature variations and that there is no need to air-condition in the enclosure. The thermal amplitude makes it possible to see the influence of the earthen walls on the interior temperature and its regularity compared to the fluctuation of the external temperature. The thermal inertia of the building walls was characterized using also the time lag and the decrement factor. They was respectively 7.0 H and 0.093 for the room (L). With this result we can say that this material has a high thermal inertia. For humidity, it is high around 78.5% in the room (L), 66.0% at the semi-open living room, when it is 59.0% outside. Through this study, it is possible that the revalorization of vernacular architecture can be an alternative to reduce the energy consumption of buildings.
基金National Natural Science Foundation of China, No.40901031 Shanghai Natural Science Foundation, No.09ZR1428800+3 种基金 National Key Project of Scientific and Technical Supporting Programs, No.2007BAC29B05 Special Project of Research-style Operation in Shanghai Meteorological Bureau, No.YJ200803 No.YJ200805 National 863 Program, No.2006AA12Z104
文摘Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year, spring, summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China. The results indicate that as a whole, the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China. Vegetation NDVI maximally responds to the variation of temperature with a lag of about 10 days, and it maximally responds to the variation of precipitation with a lag of about 30 days. The response of vegetation NDVI to temperature and precipitation is most pronounced in autumn, and has the longest lag in summer. Spatially, the maximum response of vegetation NDVI to the variation of temperature is more pronounced in the northern and middle parts than in the southern part of eastern China. The maximum response of vegetation NDVI to the variation of precipitation is more pronounced in the northern part than in the middle and southern parts of eastern China. The response of vegetation NDVI to the variation of temperature has longer lag in the northern and southern parts than in the middle part of eastern China. The response of vegetation NDVl to the variation of precipitation has the longest lag in the southern part, and the shortest lag in the northern part of eastern China. The response of vegetation NDVI to the variation of temperature and precipitation in eastern China is mainly consistent with other results, but the lag time of vegetation NDVI to the variation of temperature and precipitation has some differences with those results of the monsoon region of eastern China.
基金supported by the National Key Technologies R&D Program of China (2011BAD32B01)the Ph D Programs Foundation of Ministry of Education of China (20100101110035)
文摘The normalized difference vegetation index (NDVI) has proven to be typically employed to assess terrestrial vegetation conditions. However, one limitation of NDVI for drought monitoring is the apparent time lag between rainfall deficit and NDVI response. To better understand this relationship, time series NDVI (2000-2010) during the growing season in Sichuan Province and Chongqing City were analyzed. The vegetation condition index (VCI) was used to construct a new drought index, time-integrated vegetation condition index (TIVCI), and was then compared with meteorological drought indices-standardized precipitation index (SPI), a multiple-time scale meteorological-drought index based on precipitation, to examine the sensitivity on droughts. Our research findings indicate the followings: (1) farmland NDVI sensitivity to precipitation in study area has a time lag of 16-24 d, and it maximally responds to the temperature with a lag of about 16 d. (2) We applied the approach to Sichuan Province and Chongqing City for extreme drought monitoring in 2006 and 2003, and the results show that the monitoring results from TIVCI are closer to the published China agricultural statistical data than VCI. Compared to VCI, the best results from TIVCI3 were found with the relative errors of -4.5 and 6.36% in 2006 for drought affected area and drought disaster area respectively, and 5.11 and -5.95% in 2003. (3) Compared to VCI, TIVCI has better correlation with the SPI, which indicates the lag and cumulative effects of precipitation on vegetation. Our finding proved that TIVCI is an effective indicator of drought detection when the time lag effects between NDVI and climate factors are taken into consideration.
基金supported by the project ‘the Weather Cause of Formation for Blizzard Hazard in South China’ from the Ministry of ScienceTechnology National Technological Support Project (2008BAC48B02).
文摘It is suggested that the multiple samples in a correlation map or a set of correlation maps should be examined with significance tests as per the Bernoulli probability model. Therefore, both the contemporaneous and lag correlations of summertime precipitation R in any one of the three regions of Northern China (NC), the Changjiang-Huaihe River Valley (CHRV), and Southern China (SC) with the SSTA in the global domain have been tested in the present article, using our significance test method and the method proposed by Livezey and Chen (1983) respectively. Our results demonstrate that the contemporaneous correlations of sum- mer R in CHRV with the SSTA are larger than those in NC. Significant correlations of SSTA with CHRV R are found to be in some warm SST regions in the tropics, whereas those of SSTA with NC R, which are opposite in sign as compared to the SSTA-CHRVR correlations, are found to be in some regions where the mean SSTs are low. In comparison with the patterns of the contemporaneous correlations, the 1 to 12 month lag correlations between NC R and SSTA, and those between CHRV summer R and SSTA show similar patterns, including the magnitudes and signs, and the spatial distributions of the coefficients. However, the summer rainfall in SC is not well correlated with the SSTA, no matter how long the lag interval is. The results derived from the observations have set up a relationship frame connecting the precipitation anomalies in NC, CHRV, and SC with the SSTA in the global domain, which is critically useful for our understanding and predicting the climate variabilities in different parts of China. Both NC and CHRV summer R are connected with E1 Nifio events, showing a ‘- -'pattern in an E1 Nifio year and a‘+ +' pattern in the subsequent year. Key words summer precipitation; eastern China; global sea surface
基金supported by the National Natural Science Foundation of China (Grant Nos. 51878185, 52078506, and 52178321)
文摘Throughout the service life, underground structures are subjected to transient and sustained hydrostatic pressures. The reservoir impoundment results in an increase in water level, as well as hydraulic gradient,which can endanger the uplift performance of infrastructure. In uplift design, a reduction factor is often suggested for buoyant force acting on underground structures in clays due to the time lag effect.However, the mechanism of pore pressure generation in clays is not fully understood. This investigation presents a novel U-shaped test chamber to assess the pore pressure generation with time in the horizontal branch subjected to an increase in reservoir level in the left vertical branch. A mathematical model is developed to explain the time lag effect of pore pressure generation. The test program also involves the evaluation of uplift pressure acting on foundation model in the right vertical branch due to adjacent reservoir impoundment. It is found that the time lag effect of pore pressure generation in clays can be observed irrespective of hydraulic gradient, but a higher hydraulic gradient can lead to a faster response in pore pressure sensors. A reduction factor of 0.84-0.87 should be considered to reduce the conservatism of uplift design.
文摘Some key operation variables influencing hot metal silicon content were selected, and time lag of each of them was obtained. A standardized fuzzy system model was developed to approach the random nonlinear dynamic system of the change of silicon content, forecast the change of silicon content and calculate silicon content. The prediction of hot metal silicon content is very successful with the data collected online from BF No. 1 at Laiwu Iron and Steel Group Co.