The problem of the robust fault detection filter design for time-varying delays switched systems is considered in the framework of mixed H-/H∞. Firstly, the weighted H∞ performance index is utilized as the robustnes...The problem of the robust fault detection filter design for time-varying delays switched systems is considered in the framework of mixed H-/H∞. Firstly, the weighted H∞ performance index is utilized as the robustness performance, and the H- index is used as the sensitivity performance for obtaining the robust fault detection filter. Then a novel multiple Lyapunov-Krasovskii function is proposed for deriving sufficient existence conditions of the robust fault detection filter based on the average dwell time technique. By introducing slack matrix variable, the coupling between the Lyapunov matrix and system matrix is removed, and the conservatism of results is reduced. Based on the robust fault detection filter, residual is generated and evaluated for detecting faults. In addition, the results of this paper are dependent on time delays,and represented in the form of linear matrix inequalities. Finally,the simulation example verifies the effectiveness of the proposed method.展开更多
This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop contr...This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop control of a CMHC-based transformerless STATCOM by using the finite time robust control theory.Taking the parameters,perturbations and external disturbances into account and using coordinate transformation method,the nonlinear dynamic model of the CMHC-based transformerless STATCOM is transformed into a standard nonlinear port-controlled dissipative Hamiltonian(PCDH)structure.Based on the PCDH structure,an FTRC is designed for the CMHC-based transformerless STATCOM to improve the transient stability and oscillation damping of power system.Finally,the simulation results demonstrate that the FTRC has better dynamic performance and strong robustness in comparison with the passivity-based control of the CMHC-based transformerless STATCOM.展开更多
This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compe...This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.展开更多
基金supported by the National Natural Science Foundation of China(6127316261403104)
文摘The problem of the robust fault detection filter design for time-varying delays switched systems is considered in the framework of mixed H-/H∞. Firstly, the weighted H∞ performance index is utilized as the robustness performance, and the H- index is used as the sensitivity performance for obtaining the robust fault detection filter. Then a novel multiple Lyapunov-Krasovskii function is proposed for deriving sufficient existence conditions of the robust fault detection filter based on the average dwell time technique. By introducing slack matrix variable, the coupling between the Lyapunov matrix and system matrix is removed, and the conservatism of results is reduced. Based on the robust fault detection filter, residual is generated and evaluated for detecting faults. In addition, the results of this paper are dependent on time delays,and represented in the form of linear matrix inequalities. Finally,the simulation example verifies the effectiveness of the proposed method.
基金supported by Guizhou Provincial Science and Technology Foundation(No.QiankeheJzi[2015]2070,Qiankehejichu[2016]1064,Qiankehejichu[2017]1074,Qiankehejichu[2018]1068,Qiankehezhicheng[2018]2164)the Chinese National Natural Science Foundation under Grant No.61563011the Ph.D research fund of Guizhou Normal University under Grant No.11904-0514170High level talent research project of Guizhou Institute of Technology(No.XJGC20150405).
文摘This article presents a finite-time robust control(FTRC)of a transformerless STATCOM based on a cascaded multilevel H-bridge converter(CMHC)with star configuration.The FTRC is first proposed for the current loop control of a CMHC-based transformerless STATCOM by using the finite time robust control theory.Taking the parameters,perturbations and external disturbances into account and using coordinate transformation method,the nonlinear dynamic model of the CMHC-based transformerless STATCOM is transformed into a standard nonlinear port-controlled dissipative Hamiltonian(PCDH)structure.Based on the PCDH structure,an FTRC is designed for the CMHC-based transformerless STATCOM to improve the transient stability and oscillation damping of power system.Finally,the simulation results demonstrate that the FTRC has better dynamic performance and strong robustness in comparison with the passivity-based control of the CMHC-based transformerless STATCOM.
基金supported by Esfahan Regional Electric Company(EREC)
文摘This paper presents a robust adaptive state feedback control scheme for a class of parametric-strict-feedback nonlinear systems in the presence of time varying actuator failures. The designed adaptive controller compensates a general class of actuator failures without any need for explicit fault detection. The parameters, times, and patterns of the considered failures are completely unknown. The proposed controller is constructed based on a backstepping design method. The global boundedness of all the closed-loop signals is guaranteed and the tracking error is proved to converge to a small neighborhood of the origin. The proposed approach is employed for a two-axis positioning stage system as well as an aircraft wing system. The simulation results show the correctness and effectiveness of the proposed robust adaptive actuator failure compensation approach.