Water level predictions in the river,lake and delta play an important role in flood management.Every year Mekong River delta of Vietnam is experiencing flood due to heavy monsoon rains and high tides.Land subsidence m...Water level predictions in the river,lake and delta play an important role in flood management.Every year Mekong River delta of Vietnam is experiencing flood due to heavy monsoon rains and high tides.Land subsidence may also aggravate flooding problems in this area.Therefore,accurate predictions of water levels in this region are very important to forewarn the people and authorities for taking timely adequate remedial measures to prevent losses of life and property.There are so many methods available to predict the water levels based on historical data but nowadays Machine Learning(ML)methods are considered the best tool for accurate prediction.In this study,we have used surface water level data of 18 water level measurement stations of the Mekong River delta from 2000 to 2018 to build novel time-series Bagging based hybrid ML models namely:Bagging(RF),Bagging(SOM)and Bagging(M5P)to predict historical water levels in the study area.Performances of the Bagging-based hybrid models were compared with Reduced Error Pruning Trees(REPT),which is a benchmark ML model.The data of 19 years period was divided into 70:30 ratio for the modeling.The data of the period 1/2000 to 5/2013(which is about 70%of total data)was used for the training and for the period 5/2013 to 12/2018(which is about 30%of total data)was used for testing(validating)the models.Performance of the models was evaluated using standard statistical measures:Coefficient of Determination(R2),Root Mean Square Error(RMSE)and Mean Absolute Error(MAE).Results show that the performance of all the developed models is good(R2>0.9)for the prediction of water levels in the study area.However,the Bagging-based hybrid models are slightly better than another model such as REPT.Thus,these Bagging-based hybrid time series models can be used for predicting water levels at Mekong data.展开更多
Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource managem...Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource management and the short-term planning. In this paper, the water levels of the Pattani River in the Southern of Thailand have been predicted every hour of 7 days forecast. Time Series Transformer and Linear Regression were applied in this work. The results of both were the water levels forecast that had the high accuracy. Moreover, the water levels forecasting dashboard was developed for using to monitor the water levels at the Pattani River as well.展开更多
针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像...针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像元时间序列的相似性;将水体边缘混合像元的DTW距离值设定为参考阈值,采用阈值法提取相似性较高的时间序列数据,其对应的像元即被识别为水体像元;最后利用每个像元的DTW距离值代替其后向散射值,采用8邻域搜索方法提高水体识别的精度。以2008年1—12月获取的25景分辨率为150 m的ENVISAT ASAR图像进行水体像元提取试验,结果表明,该方法的完整率和正确率均较高,能够应用于大范围区域水体的提取与制图。展开更多
基金funded by Vietnam Academy of Science and Technology(VAST)under Project Codes KHCBTÐ.02/19-21 and UQÐTCB.02/19-20.
文摘Water level predictions in the river,lake and delta play an important role in flood management.Every year Mekong River delta of Vietnam is experiencing flood due to heavy monsoon rains and high tides.Land subsidence may also aggravate flooding problems in this area.Therefore,accurate predictions of water levels in this region are very important to forewarn the people and authorities for taking timely adequate remedial measures to prevent losses of life and property.There are so many methods available to predict the water levels based on historical data but nowadays Machine Learning(ML)methods are considered the best tool for accurate prediction.In this study,we have used surface water level data of 18 water level measurement stations of the Mekong River delta from 2000 to 2018 to build novel time-series Bagging based hybrid ML models namely:Bagging(RF),Bagging(SOM)and Bagging(M5P)to predict historical water levels in the study area.Performances of the Bagging-based hybrid models were compared with Reduced Error Pruning Trees(REPT),which is a benchmark ML model.The data of 19 years period was divided into 70:30 ratio for the modeling.The data of the period 1/2000 to 5/2013(which is about 70%of total data)was used for the training and for the period 5/2013 to 12/2018(which is about 30%of total data)was used for testing(validating)the models.Performance of the models was evaluated using standard statistical measures:Coefficient of Determination(R2),Root Mean Square Error(RMSE)and Mean Absolute Error(MAE).Results show that the performance of all the developed models is good(R2>0.9)for the prediction of water levels in the study area.However,the Bagging-based hybrid models are slightly better than another model such as REPT.Thus,these Bagging-based hybrid time series models can be used for predicting water levels at Mekong data.
文摘Nowadays, the deep learning methods are widely applied to analyze and predict the trend of various disaster events and offer the alternatives to make the appropriate decisions. These support the water resource management and the short-term planning. In this paper, the water levels of the Pattani River in the Southern of Thailand have been predicted every hour of 7 days forecast. Time Series Transformer and Linear Regression were applied in this work. The results of both were the water levels forecast that had the high accuracy. Moreover, the water levels forecasting dashboard was developed for using to monitor the water levels at the Pattani River as well.
文摘针对SAR图像数据集的特点,提出了一种基于像元级图像时间序列相似性的水体提取方法。其基本思想是:构建像元级SAR图像时间序列,选取动态时间归整(dynamic time warping,DTW)算法作为时间序列相似度的度量方法,计算所有像元与标准水体像元时间序列的相似性;将水体边缘混合像元的DTW距离值设定为参考阈值,采用阈值法提取相似性较高的时间序列数据,其对应的像元即被识别为水体像元;最后利用每个像元的DTW距离值代替其后向散射值,采用8邻域搜索方法提高水体识别的精度。以2008年1—12月获取的25景分辨率为150 m的ENVISAT ASAR图像进行水体像元提取试验,结果表明,该方法的完整率和正确率均较高,能够应用于大范围区域水体的提取与制图。