Aiming at the problem of ignoring the importance of starting point features of trajecory segmentation in existing trajectory compression algorithms,a study was conducted on the preprocessing process of trajectory time...Aiming at the problem of ignoring the importance of starting point features of trajecory segmentation in existing trajectory compression algorithms,a study was conducted on the preprocessing process of trajectory time series.Firstly,an algorithm improvement was proposed based on the segmentation algorithm GRASP-UTS(Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation).On the basis of considering trajectory coverage,this algorithm designs an adaptive parameter adjustment to segment long-term trajectory data reasonably and the identification of an optimal starting point for segmentation.Then the compression efficiency of typical offline and online algorithms,such as the Douglas-Peucker algorithm,the Sliding Window algorithm and its enhancements,was compared before and after segmentation.The experimental findings highlight that the Adaptive Parameters GRASP-UTS segmentation approach leads to higher fitting precision in trajectory time series compression and improved algorithm efficiency post-segmentation.Additionally,the compression performance of the Improved Sliding Window algorithm post-segmentation showcases its suitability for trajectories of varying scales,providing reasonable compression accuracy.展开更多
基金Supported by the Basic Research Projects of Liaoning Provincial Department of Education(LJKQZ20222459)。
文摘Aiming at the problem of ignoring the importance of starting point features of trajecory segmentation in existing trajectory compression algorithms,a study was conducted on the preprocessing process of trajectory time series.Firstly,an algorithm improvement was proposed based on the segmentation algorithm GRASP-UTS(Greedy Randomized Adaptive Search Procedure for Unsupervised Trajectory Segmentation).On the basis of considering trajectory coverage,this algorithm designs an adaptive parameter adjustment to segment long-term trajectory data reasonably and the identification of an optimal starting point for segmentation.Then the compression efficiency of typical offline and online algorithms,such as the Douglas-Peucker algorithm,the Sliding Window algorithm and its enhancements,was compared before and after segmentation.The experimental findings highlight that the Adaptive Parameters GRASP-UTS segmentation approach leads to higher fitting precision in trajectory time series compression and improved algorithm efficiency post-segmentation.Additionally,the compression performance of the Improved Sliding Window algorithm post-segmentation showcases its suitability for trajectories of varying scales,providing reasonable compression accuracy.