期刊文献+
共找到4,210篇文章
< 1 2 211 >
每页显示 20 50 100
Dynamic Ensemble Multivariate Time Series Forecasting Model for PM2.5
1
作者 Narendran Sobanapuram Muruganandam Umamakeswari Arumugam 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期979-989,共11页
In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many me... In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared. 展开更多
关键词 Dynamic transfer ensemble model air pollution time series analysis multivariate analysis
下载PDF
Examine the Reliability of Econometrics Software: An Empirical Comparison of Time Series Modelling
2
作者 Wickramasinghage M. A. Wickramasinghe Parana P. A. W. Athukorala +1 位作者 Siththara G. J. Senarathne Yapa P. R. D. Yapa 《Open Journal of Statistics》 2023年第1期25-45,共21页
Researchers must understand that naively relying on the reliability of statistical software packages may result in suboptimal, biased, or erroneous results, which affects applied economic theory and the conclusions an... Researchers must understand that naively relying on the reliability of statistical software packages may result in suboptimal, biased, or erroneous results, which affects applied economic theory and the conclusions and policy recommendations drawn from it. To create confidence in a result, several software packages should be applied to the same estimation problem. This study examines the results of three software packages (EViews, R, and Stata) in the analysis of time-series econometric data. The time-series data analysis which presents the determinants of macroeconomic growth of Sri Lanka from 1978 to 2020 has been used. The study focuses on testing for stationarity, cointegration, and significant relationships among the variables. The Augmented Dickey-Fuller and Phillips Perron tests were employed in this study to test for stationarity, while the Johansen cointegration test was utilized to test for cointegration. The study employs the vector error correction model to assess the short-run and long-term dynamics of the variables in an attempt to determine the relationship between them. Finally, the Granger Causality test is employed in order to examine the linear causation between the concerned variables. The study revealed that the results produced by three software packages for the same dataset and the same lag order vary significantly. This implies that time series econometrics results are sensitive to the software that is used by the researchers while providing different policy implications even for the same dataset. The present study highlights the necessity of further analysis to investigate the impact of software packages in time series analysis of economic scenarios. 展开更多
关键词 ECONOMETRICS Macroeconomic Determinants Software Packages time series modelling
下载PDF
Time Series Analysis and Prediction of COVID-19 Pandemic Using Dynamic Harmonic Regression Models
3
作者 Lei Wang 《Open Journal of Statistics》 2023年第2期222-232,共11页
Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urg... Rapidly spreading COVID-19 virus and its variants, especially in metropolitan areas around the world, became a major health public concern. The tendency of COVID-19 pandemic and statistical modelling represents an urgent challenge in the United States for which there are few solutions. In this paper, we demonstrate combining Fourier terms for capturing seasonality with ARIMA errors and other dynamics in the data. Therefore, we have analyzed 156 weeks COVID-19 dataset on national level using Dynamic Harmonic Regression model, including simulation analysis and accuracy improvement from 2020 to 2023. Most importantly, we provide new advanced pathways which may serve as targets for developing new solutions and approaches. 展开更多
关键词 Dynamic Harmonic Regression with arIMA Errors COVID-19 Pandemic Forecasting models time series Analysis Weekly Seasonality
下载PDF
Time series modeling of animal bites 被引量:1
4
作者 Fatemeh Rostampour Sima Masoudi 《Journal of Acute Disease》 2023年第3期121-128,共8页
Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran... Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran from 2011 to 2017.We used decomposition methods to explore seasonality and long-term trends and applied the Autoregressive Integrated Moving Average(ARIMA)model to fit a univariate time series of animal bite incidence.The ARIMA modeling process involved selecting the time series,transforming the series,selecting the appropriate model,estimating parameters,and forecasting.Results:Our results using the Box Jenkins model showed a significant seasonal trend and an overall increase in animal bite incidents during the study period.The best-fitting model for the available data was a seasonal ARIMA model with drift in the form of ARIMA(2,0,0)(1,1,1).This model can be used to forecast the frequency of animal attacks in northwest Iran over the next two years,suggesting that the incidence of animal attacks in the region would continue to increase during this time frame(2018-2019).Conclusion:Our findings suggest that time series analysis is a useful method for investigating animal bite cases and predicting future occurrences.The existence of a seasonal trend in animal bites can also aid in planning healthcare services during different seasons of the year.Therefore,our study highlights the importance of implementing proactive measures to address the growing issue of animal bites in Iran. 展开更多
关键词 Animal bites time series analysis arIMA model­ing Box Jenkins model Northwest Iran
下载PDF
Combined hybrid energy storage system and transmission grid model for peak shaving based on time series operation simulation 被引量:1
5
作者 Mingkui Wei Yiyu Wen +3 位作者 Qiu Meng Shunwei Zheng Yuyang Luo Kai Liao 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期154-165,共12页
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o... This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model. 展开更多
关键词 Peak shaving Hybrid energy storage system Combined energy storage and transmission grid model time series operation simulation
下载PDF
Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model 被引量:1
6
作者 周亚同 樊煜 +1 位作者 陈子一 孙建成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期22-26,共5页
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au... The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. 展开更多
关键词 GPM Multimodality Prediction of Chaotic time series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture model EM SHC
下载PDF
Research on Optimize Prediction Model and Algorithm about Chaotic Time Series
7
作者 JIANGWei-jin XUYu-sheng 《Wuhan University Journal of Natural Sciences》 CAS 2004年第5期735-739,共5页
We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by u... We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software. 展开更多
关键词 chaotic time series parameter identification optimal prediction model improved change ruler method
下载PDF
AR Model Based on Time Series Modeling for Predicting Egg Market Price in 2021
8
作者 Min YAO Qingmeng LONG +4 位作者 Di ZHOU Jun LI Ping LI Ying SHI Yan WANG 《Agricultural Biotechnology》 CAS 2021年第3期89-93,共5页
Eggs,as a meat consumer product in China,are closely related to the vegetable basket project.Exploring and predicting the future trend of egg market price is of great significance for stabilizing egg price and market ... Eggs,as a meat consumer product in China,are closely related to the vegetable basket project.Exploring and predicting the future trend of egg market price is of great significance for stabilizing egg price and market supply.In this study,the time series AR model was used for fitting the egg market prices in the 66 d from January 1 to March 7,2021,and the delay operator nlag18 was used for white noise test,giving pr>probability of chisq<0.005.The time series was not a white noise series,and then the stationary series was used for modeling.The optimal model was selected as the AR series(BIC(3,0)),and finally,the egg market price model AM was obtained as X_(t)=9.0556+(1+0.8926)ε_(t),which was the optimal model.The model showed that the egg price fluctuations in 2021 will be clustered,and the later price will be significantly affected by external factors in the previous period.The dynamic prediction results of the model showed that the egg price would stop falling in March 2020,and the egg price would continue to slow down in March. 展开更多
关键词 time series Autocorrelation coefficient Partial correlation coefficient ar model Egg market price
下载PDF
TIME SERIES NEURAL NETWORK MODEL FOR HYDROLOGIC FORECASTING 被引量:4
9
作者 钟登华 刘东海 Mittnik Stefan 《Transactions of Tianjin University》 EI CAS 2001年第3期182-186,共5页
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced... Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible. 展开更多
关键词 hydrologic forecasting time series neural network model back propagation
下载PDF
RESEARCH ON NONLINEAR MODELS OF TIME SERIES
10
作者 Ma Ni Wei Gang (Dept. of Electron, and Comm. Eng., South China University of Technology, Guangzhou 510641) 《Journal of Electronics(China)》 1999年第3期200-207,共8页
This paper presents some nonlinear models for time series. The structures and training methods for each model have been analyzed and studied. Experimental results for some common time series are given.
关键词 time series analysis NONLINEar model NONLINEar PREDICTION
下载PDF
Condition for Successful Square Transformation in Time Series Modeling
11
作者 J. Ohakwe O. Iwuoha E. L. Otuonye 《Applied Mathematics》 2013年第4期680-687,共8页
In this study we establish the probability density function of the square transformed left-truncated N(1,σ2) error component of the multiplicative time series model and the functional expressions for its mean and var... In this study we establish the probability density function of the square transformed left-truncated N(1,σ2) error component of the multiplicative time series model and the functional expressions for its mean and variance. Furthermore the mean and variance of the square transformed left-truncated N(1,σ2) error component and those of the untransformed component were compared for the purpose of establishing the interval for σ where the properties of the two distributions are approximately the same in terms of equality of means and normality. From the results of the study, it was established that the two distributions are normally distributed and have means ≌1.0 correct to 1 dp in the interval 0 σ , hence a successful square transformation where necessary is achieved for values of σ such that 0 σ . 展开更多
关键词 ERROR Component MULTIPLICATIVE time series model SQUarE TRANSFORMATION MOMENTS
下载PDF
Stochastic Characteristics and Modelling of Monthly Rainfall Time Series of Ilorin, Nigeria
12
作者 Ahaneku, I. Edwin Otache, Y. Martins 《Open Journal of Modern Hydrology》 2014年第3期67-79,共13页
The analysis of time series is essential for building mathematical models to generate synthetic hydrologic records, to forecast hydrologic events, to detect intrinsic stochastic characteristics of hydrologic variables... The analysis of time series is essential for building mathematical models to generate synthetic hydrologic records, to forecast hydrologic events, to detect intrinsic stochastic characteristics of hydrologic variables as well to fill missing and extend records. To this end, this paper examined the stochastic characteristics of the monthly rainfall series of Ilorin, Nigeria vis-à-vis modelling of same using four modelling schemes. The Decomposition, Square root transformation-deseasonalisation, Composite, and Periodic Autoregressive (T-F) modelling schemes were adopted. Results of basic analysis of the stochastic characteristics revealed that the monthly series does not show any discernible presence of long-term trend, though there is a seeming inter-decadal annual variation. The series exhibits strong seasonality throughout its length, both in the moments and autocorrelation and significantly intermittent. Based on assessment of the respective models, the performance of the different modelling schemes can be expressed in this order: T-F > Composite > Square root transformation-Deseasonalised > Decomposition. Considering the results obtained, modelling of monthly rainfall series in the presence of serial correlation between months should be based on the establishment of conditional probability framework. On the other hand, in view of the inadequacy of these modelling schemes, because of the autoregressive model components in the coupling protocol, nonlinear deterministic methods such as Artificial Neural Network, Wavelet models could be viable complements to the linear stochastic framework. 展开更多
关键词 STOCHASTIC time series modelling RAINFALL PERIODICITY ERGODIC Ilorin
下载PDF
TIME SERIES AND GREY MODEL DIAGNOSIS METHOD USED TO CRACK PROBLEMS 被引量:1
13
作者 程春芳 杨松 +2 位作者 钱仁根 邰卫华 刘立 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1996年第1期74+69-74,共7页
In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical cri... In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical criterion for crack initiation was proposed. 展开更多
关键词 frequency spectrum time series grey system model
下载PDF
Research on Hydrological Time Series Prediction Based on Combined Model
14
作者 Yi Cheng Yuansheng Lou +1 位作者 Feng Ye Ling Li 《国际计算机前沿大会会议论文集》 2017年第1期142-143,共2页
Water level prediction of river runoff is an important part of hydrological forecasting.The change of water level not only has the trend and seasonal characteristics,but also contains the noise factors.And the water l... Water level prediction of river runoff is an important part of hydrological forecasting.The change of water level not only has the trend and seasonal characteristics,but also contains the noise factors.And the water level prediction ability of a single model is limited.Since the traditional ARIMA(Autoregressive Integrated Moving Average)model is not accurate enough to predict nonlinear time series,and the WNN(Wavelet Neural Network)model requires a large training set,we proposed a new combined neural network prediction model which combines the WNN model with the ARIMA model on the basis of wavelet decomposition.The combined model fit the wavelet transform sequences whose frequency are high with the WNN,and the scale transform sequence which has low frequency is fitted by the ARIMA model,and then the prediction results of the above are reconstructed by wavelet transform.The daily average water level data of the Liuhe hydrological station in the Chu River Basin of Nanjing are used to forecast the average water level of one day ahead.The combined model is compared with other single models with MATLAB,and the experimental results show that the accuracy of the combined model is improved by 7%compared with the traditional wavelet network under the appropriate wavelet decomposition function and the combined model parameters. 展开更多
关键词 Combined model AUTOREGRESSIVE Integrated MOVING AVERAGE Prediction WAVELET NEURAL network HYDROLOGICAL time series
下载PDF
A Time Series Data Mining Based on ARMA and MLFNN Model for Intrusion Detection
15
作者 Tianqi Yang 《通讯和计算机(中英文版)》 2006年第7期16-21,30,共7页
关键词 数据处理 网络技术 arMA模型 MLFMN模型
下载PDF
Fault Prediction Based on Dynamic Model and Grey Time Series Model in Chemical Processes 被引量:13
16
作者 田文德 胡明刚 李传坤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第6期643-650,共8页
This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is intro... This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction. 展开更多
关键词 fault prediction dynamic model grey model time series model
下载PDF
Forecasting the number of zoonotic cutaneous leishmaniasis cases in south of Fars province, Iran using seasonal ARIMA time series method 被引量:9
17
作者 Mehdi Sharafi Haleh Ghaem +1 位作者 Hamid Reza Tabatabaee Hossein Faramarzi 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2017年第1期77-83,共7页
Objective: To predict the trend of cutaneous leishmaniasis and assess the relationship between the disease trend and weather variables in south of Fars province using Seasonal Autoregressive Integrated Moving Average(... Objective: To predict the trend of cutaneous leishmaniasis and assess the relationship between the disease trend and weather variables in south of Fars province using Seasonal Autoregressive Integrated Moving Average(SARIMA) model,Methods: The trend of cutaneous leishmaniasis was predicted using Mini tab software and SARIMA model,Besides,information about the disease and weather conditions was collected monthly based on time series design during January 2010 to March 2016,Moreover,various SARIMA models were assessed and the best one was selected,Then,the model's fitness was evaluated based on normality of the residuals' distribution,correspondence between the fitted and real amounts,and calculation of Akaike Information Criteria(AIC) and Bayesian Information Criteria(BIC),Results: The study results indicated that SARIMA model(4,1,4)(0,1,0)(12) in general and SARIMA model(4,1,4)(0,1,1)(12) in below and above 15 years age groups could appropriately predict the disease trend in the study area,Moreover,temperature with a three-month delay(lag3) increased the disease trend,rainfall with a four-month delay(lag4) decreased the disease trend,and rainfall with a nine-month delay(lag9) increased the disease trend,Conclusions: Based on the results,leishmaniasis follows a descending trend in the study area in case drought condition continues,SARIMA models can suitably measure the disease trend,and the disease follows a seasonal trend. 展开更多
关键词 SarIMA model Zoonotic cutaneous leishmaniasis time series analysis
下载PDF
Application of uncertainty reasoning based on cloud model in time series prediction 被引量:11
18
作者 张锦春 胡谷雨 《Journal of Zhejiang University Science》 EI CSCD 2003年第5期578-583,共6页
Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been develop... Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been developed for modeling and predicting time series. In the traditional exponential smoothing method, a fixed weight is assigned to data history, and the trend changes of time series are ignored. In this paper, an uncertainty reasoning method, based on cloud model, is employed in time series prediction, which uses cloud logic controller to adjust the smoothing coefficient of the simple exponential smoothing method dynamically to fit the current trend of the time series. The validity of this solution was proved by experiments on various data sets. 展开更多
关键词 time series prediction Cloud model Simple expo nential smoothing method
下载PDF
Time Series Models for Short Term Prediction of the Incidence of Japanese Encephalitis in Xianyang City, P R China 被引量:3
19
作者 张荣强 李凤英 +5 位作者 刘军礼 刘美宁 罗文瑞 马婷 马波 张志刚 《Chinese Medical Sciences Journal》 CAS CSCD 2017年第3期152-160,共9页
Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference ... Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference information for JE control and prevention. Methods Theoretically epidemiologic study was employed in the research process. Monthly incidence data on JE for the period from Jan 2005 to Sep 2014 were obtained from a passive surveillance system at the Center for Diseases Prevention and Control in Xianyang, Shaanxi province. An optimal SARIMA model was developed for JE incidence from 2005 to 2013 with the Box and Jenkins approach. This SARIMA model could predict JE incidence for the year 2014 and 2015. Results SARIMA (1, 1, 1) (2, 1, 1)12 was considered to be the best model with the lowest Bayesian information criterion, Akaike information criterion, Mean Absolute Error values, the highest R2, and a lower Mean Absolute Percent Error. SARIMA (1, 1, 1) (2, 1, 1)12 was stationary and accurate for predicting JE incidence in Xianyang. The predicted incidence, around 0.3/100 000 from June to August in 2014 with low errors, was higher compared with the actual incidence. Therefore, SARIMA (1, 1, 1) (2, 1, 1)12 appeared to be reliable and accurate and could be applied to incidence prediction. Conclusions The proposed prediction model could provide clues to early identification of the JE incidence that is increased abnormally (≥0.4/100 000). According to the predicted results in 2014, the JE incidence in Xianyang will decline slightly and reach its peak from June to August.The authors wish to thank the staff from the CDCs from 13 counties of Xianyang, Shaanxi province, China, for their contribution to Japanese encephalitis cases reporting. 展开更多
关键词 Japanese encephalitis time series models INCIDENCE PREDICTION
下载PDF
STUDY ON THE PREDICTION METHOD OF LOW-DIMENSION TIME SERIES THAT ARISE FROM THE INTRINSIC NONLINEAR DYNAMICS 被引量:2
20
作者 MA Junhai(马军海) +1 位作者 CHEN Yushu(陈予恕) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第5期501-509,共9页
The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time se... The prediction methods and its applications of the nonlinear dynamic systems determined from chaotic time series of low-dimension are discussed mainly. Based on the work of the foreign researchers, the chaotic time series in the phase space adopting one kind of nonlinear chaotic model were reconstructed. At first, the model parameters were estimated by using the improved least square method. Then as the precision was satisfied, the optimization method was used to estimate these parameters. At the end by using the obtained chaotic model, the future data of the chaotic time series in the phase space was predicted. Some representative experimental examples were analyzed to testify the models and the algorithms developed in this paper. ne results show that if the algorithms developed here are adopted, the parameters of the corresponding chaotic model will be easily calculated well and true. Predictions of chaotic series in phase space make the traditional methods change from outer iteration to interpolations. And if the optimal model rank is chosen, the prediction precision will increase notably. Long term superior predictability of nonlinear chaotic models is proved to be irrational and unreasonable. 展开更多
关键词 NONLINEar chaotic model parameter identification time series prediction
下载PDF
上一页 1 2 211 下一页 到第
使用帮助 返回顶部