期刊文献+
共找到4,110篇文章
< 1 2 206 >
每页显示 20 50 100
A novel framework for predicting non-stationary production time series of shale gas based on BiLSTM-RF-MPA deep fusion model
1
作者 Bin Liang Jiang Liu +4 位作者 Li-Xia Kang Ke Jiang Jun-Yu You Hoonyoung Jeong Zhan Meng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3326-3339,共14页
Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challe... Shale gas, as an environmentally friendly fossil energy resource, has gained significant commercial development and shows immense potential. However, accurately predicting shale gas production faces substantial challenges due to the complex law of decline, nonlinear and non-stationary features in production data, which greatly repair the robustness of current models in predicting shale gas production time series. To address these challenges and improve accuracy in production forecasting, this paper introduces a novel and innovative approach: a hybrid proxy model that combines the bidirectional long short-term memory(BiLSTM) neural network and random forest(RF) through deep learning. The BiLSTM neural network is adept at capturing long-term dependencies, making it suitable for understanding the intricate relationships between input and output variables in shale gas production.On the other hand, RF serves a dual purpose: reducing model variance and addressing the concept drift problem that arises in non-stationary time series predictions made by BiLSTM. By integrating these two models, the hybrid approach effectively captures the inherent dependencies present in long and nonstationary production time series, thereby reducing model uncertainty. Furthermore, the combination of BiLSTM and RF is optimized using the recently-proposed marine predators algorithm(MPA) to fine-tune hyperparameters and enhance the overall performance of the proxy model. The results demonstrate that the proposed BiLSTM-RF-MPA model achieves higher prediction accuracy and demonstrates stronger generalization capabilities by effectively handling the complex nonlinear and non-stationary characteristics of shale gas production time series. Compared to other models such as LSTM, BiLSTM, and RF, the proposed model exhibits superior fitting and prediction performance, with an average improvement in performance indicators exceeding 20%. This innovative framework provides valuable insights for forecasting the complex production performance of unconventional oil and gas reservoirs, which sheds light on the development of data-driven proxy models in the field of subsurface energy utilization. 展开更多
关键词 Production forecasting Shale gas BiLSTM-RF-MPA model Nonstationary production time series Deep learning
下载PDF
TIME SERIES NEURAL NETWORK MODEL FOR HYDROLOGIC FORECASTING 被引量:4
2
作者 钟登华 刘东海 Mittnik Stefan 《Transactions of Tianjin University》 EI CAS 2001年第3期182-186,共5页
Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation proced... Time series analysis plays an important role in hydrologic forecasting,while the key to this analysis is to establish a proper model.This paper presents a time series neural network model with back propagation procedure for hydrologic forecasting.Free from the disadvantages of previous models,the model can be parallel to operate information flexibly and rapidly.It excels in the ability of nonlinear mapping and can learn and adjust by itself,which gives the model a possibility to describe the complex nonlinear hydrologic process.By using directly a training process based on a set of previous data, the model can forecast the time series of stream flow.Moreover,two practical examples were used to test the performance of the time series neural network model.Results confirm that the model is efficient and feasible. 展开更多
关键词 hydrologic forecasting time series neural network model back propagation
下载PDF
TIME SERIES AND GREY MODEL DIAGNOSIS METHOD USED TO CRACK PROBLEMS 被引量:1
3
作者 程春芳 杨松 +2 位作者 钱仁根 邰卫华 刘立 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1996年第1期74+69-74,共7页
In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical cri... In this paper,the vibration signals in the fatigue crack growth process in a chinese steel used in a mining machinery were analyzed by the frequency spectrum, the time series and grey system model,and the critical criterion for crack initiation was proposed. 展开更多
关键词 frequency spectrum time series grey system model
下载PDF
Fault Prediction Based on Dynamic Model and Grey Time Series Model in Chemical Processes 被引量:13
4
作者 田文德 胡明刚 李传坤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第6期643-650,共8页
This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is intro... This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction. 展开更多
关键词 fault prediction dynamic model grey model time series model
下载PDF
Application of uncertainty reasoning based on cloud model in time series prediction 被引量:11
5
作者 张锦春 胡谷雨 《Journal of Zhejiang University Science》 EI CSCD 2003年第5期578-583,共6页
Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been develop... Time series prediction has been successfully used in several application areas, such as meteoro-logical forecasting, market prediction, network traffic forecasting, etc. , and a number of techniques have been developed for modeling and predicting time series. In the traditional exponential smoothing method, a fixed weight is assigned to data history, and the trend changes of time series are ignored. In this paper, an uncertainty reasoning method, based on cloud model, is employed in time series prediction, which uses cloud logic controller to adjust the smoothing coefficient of the simple exponential smoothing method dynamically to fit the current trend of the time series. The validity of this solution was proved by experiments on various data sets. 展开更多
关键词 time series prediction Cloud model Simple expo nential smoothing method
下载PDF
Time-varying parameter auto-regressive models for autocovariance nonstationary time series 被引量:2
6
作者 FEI WanChun BAI Lun 《Science China Mathematics》 SCIE 2009年第3期577-584,共8页
In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the t... In this paper, autocovariance nonstationary time series is clearly defined on a family of time series. We propose three types of TVPAR (time-varying parameter auto-regressive) models: the full order TVPAR model, the time-unvarying order TVPAR model and the time-varying order TV-PAR model for autocovariance nonstationary time series. Related minimum AIC (Akaike information criterion) estimations are carried out. 展开更多
关键词 autocovariance nonstationary time series time-varying parameter time-varying order auto-regressive model minimum AIC estimation 37M10 68Q10
原文传递
Time Series Models for Short Term Prediction of the Incidence of Japanese Encephalitis in Xianyang City, P R China 被引量:3
7
作者 张荣强 李凤英 +5 位作者 刘军礼 刘美宁 罗文瑞 马婷 马波 张志刚 《Chinese Medical Sciences Journal》 CAS CSCD 2017年第3期152-160,共9页
Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference ... Objective To construct a model of Seasonal Autoregressive Integrated Moving Average (SARIMA) for forecasting the epidemic of Japanese encephalitis (JE) in Xianyang, Shaanxi, China, and provide valuable reference information for JE control and prevention. Methods Theoretically epidemiologic study was employed in the research process. Monthly incidence data on JE for the period from Jan 2005 to Sep 2014 were obtained from a passive surveillance system at the Center for Diseases Prevention and Control in Xianyang, Shaanxi province. An optimal SARIMA model was developed for JE incidence from 2005 to 2013 with the Box and Jenkins approach. This SARIMA model could predict JE incidence for the year 2014 and 2015. Results SARIMA (1, 1, 1) (2, 1, 1)12 was considered to be the best model with the lowest Bayesian information criterion, Akaike information criterion, Mean Absolute Error values, the highest R2, and a lower Mean Absolute Percent Error. SARIMA (1, 1, 1) (2, 1, 1)12 was stationary and accurate for predicting JE incidence in Xianyang. The predicted incidence, around 0.3/100 000 from June to August in 2014 with low errors, was higher compared with the actual incidence. Therefore, SARIMA (1, 1, 1) (2, 1, 1)12 appeared to be reliable and accurate and could be applied to incidence prediction. Conclusions The proposed prediction model could provide clues to early identification of the JE incidence that is increased abnormally (≥0.4/100 000). According to the predicted results in 2014, the JE incidence in Xianyang will decline slightly and reach its peak from June to August.The authors wish to thank the staff from the CDCs from 13 counties of Xianyang, Shaanxi province, China, for their contribution to Japanese encephalitis cases reporting. 展开更多
关键词 Japanese encephalitis time series models INCIDENCE PREDICTION
下载PDF
A Hybrid Neural Network and Box-Jenkins Models for Time Series Forecasting 被引量:1
8
作者 Mohammad Hadwan Basheer M.Al-Maqaleh +2 位作者 Fuad N.Al-Badani Rehan Ullah Khan Mohammed A.Al-Hagery 《Computers, Materials & Continua》 SCIE EI 2022年第3期4829-4845,共17页
Time series forecasting plays a significant role in numerous applications,including but not limited to,industrial planning,water consumption,medical domains,exchange rates and consumer price index.The main problem is ... Time series forecasting plays a significant role in numerous applications,including but not limited to,industrial planning,water consumption,medical domains,exchange rates and consumer price index.The main problem is insufficient forecasting accuracy.The present study proposes a hybrid forecastingmethods to address this need.The proposed method includes three models.The first model is based on the autoregressive integrated moving average(ARIMA)statistical model;the second model is a back propagation neural network(BPNN)with adaptive slope and momentum parameters;and the thirdmodel is a hybridization between ARIMA and BPNN(ARIMA/BPNN)and artificial neural networks and ARIMA(ARIMA/ANN)to gain the benefits of linear and nonlinearmodeling.The forecasting models proposed in this study are used to predict the indices of the consumer price index(CPI),and predict the expected number of cancer patients in the Ibb Province in Yemen.Statistical standard measures used to evaluate the proposed method include(i)mean square error,(ii)mean absolute error,(iii)root mean square error,and(iv)mean absolute percentage error.Based on the computational results,the improvement rate of forecasting the CPI dataset was 5%,71%,and 4%for ARIMA/BPNN model,ARIMA/ANN model,and BPNN model respectively;while the result for cancer patients’dataset was 7%,200%,and 19%for ARIMA/BPNNmodel,ARIMA/ANN model,and BPNNmodel respectively.Therefore,it is obvious that the proposed method reduced the randomness degree,and the alterations affected the time series with data non-linearity.The ARIMA/ANN model outperformed each of its components when it was applied separately in terms of increasing the accuracy of forecasting and decreasing the overall errors of forecasting. 展开更多
关键词 Hybrid model forecasting non-linear data time series models cancer patients neural networks box-jenkins consumer price index
下载PDF
Time Series Facebook Prophet Model and Python for COVID-19 Outbreak Prediction 被引量:1
9
作者 Mashael Khayyat Kaouther Laabidi +1 位作者 Nada Almalki Maysoon Al-zahrani 《Computers, Materials & Continua》 SCIE EI 2021年第6期3781-3793,共13页
COVID-19 comes from a large family of viruses identied in 1965;to date,seven groups have been recorded which have been found to affect humans.In the healthcare industry,there is much evidence that Al or machine learni... COVID-19 comes from a large family of viruses identied in 1965;to date,seven groups have been recorded which have been found to affect humans.In the healthcare industry,there is much evidence that Al or machine learning algorithms can provide effective models that solve problems in order to predict conrmed cases,recovered cases,and deaths.Many researchers and scientists in the eld of machine learning are also involved in solving this dilemma,seeking to understand the patterns and characteristics of virus attacks,so scientists may make the right decisions and take specic actions.Furthermore,many models have been considered to predict the Coronavirus outbreak,such as the retro prediction model,pandemic Kaplan’s model,and the neural forecasting model.Other research has used the time series-dependent face book prophet model for COVID-19 prediction in India’s various countries.Thus,we proposed a prediction and analysis model to predict COVID-19 in Saudi Arabia.The time series dependent face book prophet model is used to t the data and provide future predictions.This study aimed to determine the pandemic prediction of COVID-19 in Saudi Arabia,using the Time Series Analysis to observe and predict the coronavirus pandemic’s spread daily or weekly.We found that the proposed model has a low ability to forecast the recovered cases of the COVID-19 dataset.In contrast,the proposed model of death cases has a high ability to forecast the COVID-19 dataset.Finally,obtaining more data could empower the model for further validation. 展开更多
关键词 COVID-19 time series analysis PREDICTION face book prophet model PYTHON
下载PDF
Time series modeling of animal bites 被引量:1
10
作者 Fatemeh Rostampour Sima Masoudi 《Journal of Acute Disease》 2023年第3期121-128,共8页
Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran... Objective:To explore the modeling of time series of animal bite occurrence in northwest Iran.Methods:In this study,we analyzed surveillance time series data for animal bite cases in the northwest Iran province of Iran from 2011 to 2017.We used decomposition methods to explore seasonality and long-term trends and applied the Autoregressive Integrated Moving Average(ARIMA)model to fit a univariate time series of animal bite incidence.The ARIMA modeling process involved selecting the time series,transforming the series,selecting the appropriate model,estimating parameters,and forecasting.Results:Our results using the Box Jenkins model showed a significant seasonal trend and an overall increase in animal bite incidents during the study period.The best-fitting model for the available data was a seasonal ARIMA model with drift in the form of ARIMA(2,0,0)(1,1,1).This model can be used to forecast the frequency of animal attacks in northwest Iran over the next two years,suggesting that the incidence of animal attacks in the region would continue to increase during this time frame(2018-2019).Conclusion:Our findings suggest that time series analysis is a useful method for investigating animal bite cases and predicting future occurrences.The existence of a seasonal trend in animal bites can also aid in planning healthcare services during different seasons of the year.Therefore,our study highlights the importance of implementing proactive measures to address the growing issue of animal bites in Iran. 展开更多
关键词 Animal bites time series analysis ARIMA model­ing Box Jenkins model Northwest Iran
下载PDF
Combined hybrid energy storage system and transmission grid model for peak shaving based on time series operation simulation 被引量:1
11
作者 Mingkui Wei Yiyu Wen +3 位作者 Qiu Meng Shunwei Zheng Yuyang Luo Kai Liao 《Global Energy Interconnection》 EI CAS CSCD 2023年第2期154-165,共12页
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o... This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model. 展开更多
关键词 Peak shaving Hybrid energy storage system Combined energy storage and transmission grid model time series operation simulation
下载PDF
Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model 被引量:1
12
作者 周亚同 樊煜 +1 位作者 陈子一 孙建成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期22-26,共5页
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au... The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. 展开更多
关键词 GPM Multimodality Prediction of Chaotic time series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture model EM SHC
下载PDF
Genetic programming-based chaotic time series modeling 被引量:1
13
作者 张伟 吴智铭 杨根科 《Journal of Zhejiang University Science》 EI CSCD 2004年第11期1432-1439,共8页
This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) ... This paper proposes a Genetic Programming-Based Modeling (GPM) algorithm on chaotic time series. GP is used here to search for appropriate model structures in function space, and the Particle Swarm Optimization (PSO) algorithm is used for Nonlinear Parameter Estimation (NPE) of dynamic model structures. In addition, GPM integrates the results of Nonlinear Time Series Analysis (NTSA) to adjust the parameters and takes them as the criteria of established models. Experiments showed the effectiveness of such improvements on chaotic time series modeling. 展开更多
关键词 Chaotic time series analysis Genetic programming modeling Nonlinear Parameter Estimation (NPE) Particle Swarm Optimization (PSO) Nonlinear system identification
下载PDF
Application of time series modeling to a national reference frame realization 被引量:1
14
作者 D.Fazilova Sh.Ehgamberdiev S.Kuzin 《Geodesy and Geodynamics》 2018年第4期281-287,共7页
This paper presents an option for modern dynamic terrestrial reference system realization in Uzbekistan for user needs. An additive model is explored to predict patterns of time series and investigate means of constru... This paper presents an option for modern dynamic terrestrial reference system realization in Uzbekistan for user needs. An additive model is explored to predict patterns of time series and investigate means of constructing forecast time series models in the future. The main components(trend, periodical, and irregular) of the KIUB(DORIS) and KIT3, TASH, MADK, and MTAL(GNSS) international stations coordinate time series were investigated. It was shown that seasonal nonlinear trends occurred both in the height(U) component of all stations and the east(E) component of high mountainous stations such as MTAL and MADK. The seasonal periodical portion of the time series determined from the additive model has a complicated pattern for all sites and can be explained as both hydrological signals in the region and improvement of observational quality. Amplitudes of the best-fitting sinusoids in the North component ranged between 1.73 and 8.76 mm; the East component ranged between 0.82 and 11.92 mm; and the Up component ranged between 3.11 and 40.81 mm. Regression analysis of the irregular portion of the height component of the two techniques at the Kitab station using tropospheric parameters(pressure and temperature) was confirmed as only 57% of the stochastic portion of the time series. 展开更多
关键词 Terrestrial dynamic reference frame time series analysis Forecasting model
下载PDF
Research on Optimize Prediction Model and Algorithm about Chaotic Time Series
15
作者 JIANGWei-jin XUYu-sheng 《Wuhan University Journal of Natural Sciences》 CAS 2004年第5期735-739,共5页
We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by u... We put forward a chaotic estimating model, by using the parameter of the chaotic system, sensitivity of the parameter to inching and control the disturbance of the system, and estimated the parameter of the model by using the best update option. In the end, we forecast the intending series value in its mutually space. The example shows that it can increase the precision in the estimated process by selecting the best model steps. It not only conquer the abuse of using detention inlay technology alone, but also decrease blindness of using forecast error to decide the input model directly, and the result of it is better than the method of statistics and other series means. Key words chaotic time series - parameter identification - optimal prediction model - improved change ruler method CLC number TP 273 Foundation item: Supported by the National Natural Science Foundation of China (60373062)Biography: JIANG Wei-jin (1964-), male, Professor, research direction: intelligent compute and the theory methods of distributed data processing in complex system, and the theory of software. 展开更多
关键词 chaotic time series parameter identification optimal prediction model improved change ruler method
下载PDF
Crop Yield Forecasted Model Based on Time Series Techniques
16
作者 Li Hong-ying Hou Yan-lin +1 位作者 Zhou Yong-juan Zhao Hui-ming 《Journal of Northeast Agricultural University(English Edition)》 CAS 2012年第1期73-77,共5页
Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions wa... Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point. 展开更多
关键词 potential yield forecasting model time series technique yield turning point yield channel
下载PDF
Dynamic Ensemble Multivariate Time Series Forecasting Model for PM2.5
17
作者 Narendran Sobanapuram Muruganandam Umamakeswari Arumugam 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期979-989,共11页
In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many me... In forecasting real time environmental factors,large data is needed to analyse the pattern behind the data values.Air pollution is a major threat towards developing countries and it is proliferating every year.Many methods in time ser-ies prediction and deep learning models to estimate the severity of air pollution.Each independent variable contributing towards pollution is necessary to analyse the trend behind the air pollution in that particular locality.This approach selects multivariate time series and coalesce a real time updatable autoregressive model to forecast Particulate matter(PM)PM2.5.To perform experimental analysis the data from the Central Pollution Control Board(CPCB)is used.Prediction is car-ried out for Chennai with seven locations and estimated PM’s using the weighted ensemble method.Proposed method for air pollution prediction unveiled effective and moored performance in long term prediction.Dynamic budge with high weighted k-models are used simultaneously and devising an ensemble helps to achieve stable forecasting.Computational time of ensemble decreases with paral-lel processing in each sub model.Weighted ensemble model shows high perfor-mance in long term prediction when compared to the traditional time series models like Vector Auto-Regression(VAR),Autoregressive Integrated with Mov-ing Average(ARIMA),Autoregressive Moving Average with Extended terms(ARMEX).Evaluation metrics like Root Mean Square Error(RMSE),Mean Absolute Error(MAE)and the time to achieve the time series are compared. 展开更多
关键词 Dynamic transfer ensemble model air pollution time series analysis multivariate analysis
下载PDF
AR Model Based on Time Series Modeling for Predicting Egg Market Price in 2021
18
作者 Min YAO Qingmeng LONG +4 位作者 Di ZHOU Jun LI Ping LI Ying SHI Yan WANG 《Agricultural Biotechnology》 CAS 2021年第3期89-93,共5页
Eggs,as a meat consumer product in China,are closely related to the vegetable basket project.Exploring and predicting the future trend of egg market price is of great significance for stabilizing egg price and market ... Eggs,as a meat consumer product in China,are closely related to the vegetable basket project.Exploring and predicting the future trend of egg market price is of great significance for stabilizing egg price and market supply.In this study,the time series AR model was used for fitting the egg market prices in the 66 d from January 1 to March 7,2021,and the delay operator nlag18 was used for white noise test,giving pr>probability of chisq<0.005.The time series was not a white noise series,and then the stationary series was used for modeling.The optimal model was selected as the AR series(BIC(3,0)),and finally,the egg market price model AM was obtained as X_(t)=9.0556+(1+0.8926)ε_(t),which was the optimal model.The model showed that the egg price fluctuations in 2021 will be clustered,and the later price will be significantly affected by external factors in the previous period.The dynamic prediction results of the model showed that the egg price would stop falling in March 2020,and the egg price would continue to slow down in March. 展开更多
关键词 time series Autocorrelation coefficient Partial correlation coefficient AR model Egg market price
下载PDF
Modelling time series properties of Australian lending interest rates
19
作者 Harry M. Karamujic 《Chinese Business Review》 2010年第1期50-63,共14页
The purpose of this paper is to examine the time series properties of Australian residential mortgage interest rates, and in doing so, establish whether or not selected home loan rates (product-level monthly home loa... The purpose of this paper is to examine the time series properties of Australian residential mortgage interest rates, and in doing so, establish whether or not selected home loan rates (product-level monthly home loan interest rates for CBA) exhibit the expected cyclical and seasonal variations and whether seasonality, if present, is stochastic or deterministic. In particular, due to a well established presence of cyclicality in financial markets' interest rates and strong correlation between financial markets' interest rates and home loan interest rates, the paper presumes that cyclicality is also to be found in home loan interest rates. Furthermore, the paper tests the hypothesis that home loan interest rates, for selected products, exhibit the three identified ("Spring", "Autumn" and "The end of the Financial Year") season-related interest rate reductions. The paper uses a structural time series modelling approach and product-level home loan interest rates data from one of the biggest banks in Australia, Commonwealth Bank of Australia (CBA). As expected, the results overall confirm the existence of cyclicality in home loan interest rates. With respect to the seasonality of home loan interest rate, although most of the analysed variables show the presence of statistically significant seasonal factors, the majority of the statistically significant seasonal factors observed cannot be attributed to any of the three considered seasonal effects. 展开更多
关键词 eyclicality SEASONALITY structural time series modelling home loan interest rates home loan pricing strategies
下载PDF
Development of a Modelling Script of Time Series Suitable for Data Mining
20
作者 Víctor Sanz-Fernández Remedios Cabrera +2 位作者 Rubén Muñoz-Lechuga Antonio Sánchez-Navas Ivone A. Czerwinski 《Open Journal of Statistics》 2016年第4期555-564,共11页
Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, ec... Data Mining has become an important technique for the exploration and extraction of data in numerous and various research projects in different fields (technology, information technology, business, the environment, economics, etc.). In the context of the analysis and visualisation of large amounts of data extracted using Data Mining on a temporary basis (time-series), free software such as R has appeared in the international context as a perfect inexpensive and efficient tool of exploitation and visualisation of time series. This has allowed the development of models, which help to extract the most relevant information from large volumes of data. In this regard, a script has been developed with the goal of implementing ARIMA models, showing these as useful and quick mechanisms for the extraction, analysis and visualisation of large data volumes, in addition to presenting the great advantage of being applied in multiple branches of knowledge from economy, demography, physics, mathematics and fisheries among others. Therefore, ARIMA models appear as a Data Mining technique, offering reliable, robust and high-quality results, to help validate and sustain the research carried out. 展开更多
关键词 Data Mining ARIMA models time series SCRIPT R
下载PDF
上一页 1 2 206 下一页 到第
使用帮助 返回顶部