Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit...Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit a certain regularity and therefore can provide multidimensional information that can be used to improve prediction models.Traditional decomposition methods such as seasonal and trend decomposition using Loess(STL)focus mostly on the fluctuating trend of time series and ignore its impact on prediction.Methods in the signal decomposition domain,such as variational mode decomposition(VMD),have no physical significance.In response to the above problems,a new decomposition method for sea level anomaly time series prediction(DMSLAP)is proposed.With this method,the trend term in a time series can be isolated and the effects of abnormal sea level change behaviors can be attenuated.We decompose multiperiod characteristics using this method while maintaining the smoothness of the analyzed series.Satellite altimetry data from 1993 to 2020 are used in experiments conducted in the study area.The results are then compared with predictions obtained using existing decomposition methods such as the STL and VMD methods and time varying filtering based on empirical mode decomposition(TVF-EMD).The performance of DMSLAP combined with a prediction method resulted in optimal sea level anomaly(SLA)predictions,with a minimum root mean square error(RMSE)of 1.40 cm and a maximum determination coefficient(R^(2))of 0.93 during 2020.The DMSLAP method was more accurate when predicting 1-year data and 3-year data.The TVF-EMD and DMSLAP methods had comparable accuracies,and the periodic term decomposed by the DMSLAP method was more in line with the actual law than that derived using the TVF-EMD method.Thus,DMSLAP can decompose SLA time series better than existing methods and is an effective tool for obtaining short-term SLA prediction.展开更多
Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of f...Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of fields. Due to the non-linear and unstable characteristics of multivariate time series, the existing methods encounter difficulties in analyzing complex high-dimensional data and capturing latent relationships between multivariates in time series, thus affecting the performance of long-term prediction. In this paper, we propose a novel time series forecasting model based on multilayer perceptron that combines spatio-temporal decomposition and doubly residual stacking, namely Spatio-Temporal Decomposition Neural Network (STDNet). We decompose the originally complex and unstable time series into two parts, temporal term and spatial term. We design temporal module based on auto-correlation mechanism to discover temporal dependencies at the sub-series level, and spatial module based on convolutional neural network and self-attention mechanism to integrate multivariate information from two dimensions, global and local, respectively. Then we integrate the results obtained from the different modules to get the final forecast. Extensive experiments on four real-world datasets show that STDNet significantly outperforms other state-of-the-art methods, which provides an effective solution for long-term time series forecasting.展开更多
In this paper, with consideration of the nonlinear and non-stationary properties of the temperature time series, we employ the Hilbert-Huang Transform, based on the empirical mode decomposition(EMD), to analyze the ...In this paper, with consideration of the nonlinear and non-stationary properties of the temperature time series, we employ the Hilbert-Huang Transform, based on the empirical mode decomposition(EMD), to analyze the temperature time series from 1959 to 2012 in the Fengxian district of Shanghai, obtained from a certain monitoring station. The oscillating mode is drawn from the data, and its characteristics of the time series are investigated. The results show that the intrinsic modes of 1, 2 and 6 represent the periodic properties of 1 year, 2.5 years, and 27 years. The mean temperature shows periodic variations, but the main trend of this fluctuation is the rising of the temperature in the recent 50 years. The analysis of the reconstructed modes with the wave pattern shows that the variations are quite large from 1963 to 1964, from 1977 to 1982 and from 2003 to 2006, which indicates that the temperature rises and falls dramatically in these periods. The volatility from 1993 to 1994 is far more dramatic than in other periods. And the volatility is the most remarkable in recent 50 years. The log-linear plots of the mean time scales T and M show that each mode associated with a time scale almost twice as large as the time scale of the preceding mode. The Hilbert spectrum shows that the energy is concentrated in the range of low frequency from 0.05 to 0.1 Hz, and a very small amount of energy is distributed in the range of higher frequency over 0.1 Hz. In conclusion, the HHT is better than other traditional signal analysis methods in processing the nonlinear signals to obtain the periodic variation and volatility's properties of different time scales.展开更多
On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feat...On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.展开更多
The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simu...The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simultaneously. Therefore, it is of great significance to accurately predict the demand for electricity consumption for the production planning of electricity and the normal operation of the society. In this paper, a hybrid model is constructed to predict the electricity consumption in China. The structural breaks test of monthly electricity consumption in China from January 2010 to December 2016 is carried out by using the structural breaks unit root test. Based on the existence of structura breaks, the electricity consumption data are decomposed into low-frequency and high-frequency components by wavelet model, and the separated low frequency signal and high frequency signal are predicted by autoregressive integrated moving average(ARIMA) and nonlinear autoregressive neural network(NAR), respectively. Therefore the wavelet-ARIMA-NAR hybrid model is constructed. In order to compare the effect of the hybrid model, the structural time series(STS) model is applied to predicting the electricity consumption. The results of prediction error test show that the hybrid model is more accurate for electricity consumption prediction.展开更多
The Qilian Mountains(QM)possess a delicate vegetation ecosystem,amplifying the evident response of vegetation phenology to climate change.The relationship between changes in vegetation growth and climate remains compl...The Qilian Mountains(QM)possess a delicate vegetation ecosystem,amplifying the evident response of vegetation phenology to climate change.The relationship between changes in vegetation growth and climate remains complex.To this end,we used MODIS NDVI data to extract the phenological parameters of the vegetation including meadow(MDW),grassland(GSD),and alpine vegetation(ALV))in the QM from 2002 to 2021.Then,we employed path analysis to reveal the direct and indirect impacts of seasonal climate change on vegetation phenology.Additionally,we decomposed the vegetation phenology in a time series using the trigonometric seasonality,Box-Cox transformation,ARMA errors,and Trend Seasonal components model(TBATS).The findings showed a distinct pattern in the vegetation phenology of the QM,characterized by a progressive shift towards an earlier start of the growing season(SOS),a delayed end of the growing season(EOS),and an extended length of the growing season(LOS).The growth cycle of MDW,GSD,and ALV in the QM species is clearly defined.The SOS for MDW and GSD occurred earlier,mainly between late April and August,while the SOS for ALVs occurred between mid-May and mid-August,a one-month delay compared to the other vegetation.The EOS in MDW and GSD were concentrated between late August and April and early September and early January,respectively.Vegetation phenology exhibits distinct responses to seasonal temperature and precipitation patterns.The advancement and delay of SOS were mainly influenced by the direct effect of spring temperatures and precipitation,which affected 19.59%and 22.17%of the study area,respectively.The advancement and delay of EOS were mainly influenced by the direct effect of fall temperatures and precipitation,which affected 30.18%and 21.17%of the area,respectively.On the contrary,the direct effects of temperature and precipitation in summer and winter on vegetation phenology seem less noticeable and were mainly influenced by indirect effects.The indirect effect of winter precipitation is the main factor affecting the advance or delay of SOS,and the area proportions were 16.29%and 23.42%,respectively.The indirect effects of fall temperatures and precipitation were the main factors affecting the delay and advancement of EOS,respectively,with an area share of 15.80%and 21.60%.This study provides valuable insight into the relationship between vegetation phenology and climate change,which can be of great practical value for the ecological protection of the Qinghai-Tibetan Plateau as well as for the development of GSD ecological animal husbandry in the QM alpine pastoral area.展开更多
针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟...针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟合对趋势项进行预测;其次,对滑坡周期项的影响因素进行分类,采用VMD对原始影响因子序列进行分解获得最优序列;再次,提出一种结合SVR与基于改进Circle多策略的灰狼优化算法CTGWO-SVR(Circle Tactics Grey Wolf Optimizer with SVR)对滑坡周期项进行预测;最后采用时间序列加法模型求出累计位移预测序列,并采用灰色预测的后验证差校验和小概率误差对模型进行评价。实验结果表明,与GA-SVR和GWO-SVR模型相比,CTGWO-SVR的预测精度更高,拟合度达到0.979,均方根误差分别减小了51.47%与59.25%,预测精度等级为一级,可满足滑坡预测的实时性和准确性要求。展开更多
基金Supported by the Fundamental Research Funds for the Central Universities (No.17CX02071)the National Natural Science Foundation of China (No.61571009)the Key R&D Program of Shandong Province (No.2018GHY115046)。
文摘Rising sea level is of great significance to coastal societies;predicting sea level extent in coastal regions is critical.When carrying out predictions,the subsequences obtained using decomposition methods may exhibit a certain regularity and therefore can provide multidimensional information that can be used to improve prediction models.Traditional decomposition methods such as seasonal and trend decomposition using Loess(STL)focus mostly on the fluctuating trend of time series and ignore its impact on prediction.Methods in the signal decomposition domain,such as variational mode decomposition(VMD),have no physical significance.In response to the above problems,a new decomposition method for sea level anomaly time series prediction(DMSLAP)is proposed.With this method,the trend term in a time series can be isolated and the effects of abnormal sea level change behaviors can be attenuated.We decompose multiperiod characteristics using this method while maintaining the smoothness of the analyzed series.Satellite altimetry data from 1993 to 2020 are used in experiments conducted in the study area.The results are then compared with predictions obtained using existing decomposition methods such as the STL and VMD methods and time varying filtering based on empirical mode decomposition(TVF-EMD).The performance of DMSLAP combined with a prediction method resulted in optimal sea level anomaly(SLA)predictions,with a minimum root mean square error(RMSE)of 1.40 cm and a maximum determination coefficient(R^(2))of 0.93 during 2020.The DMSLAP method was more accurate when predicting 1-year data and 3-year data.The TVF-EMD and DMSLAP methods had comparable accuracies,and the periodic term decomposed by the DMSLAP method was more in line with the actual law than that derived using the TVF-EMD method.Thus,DMSLAP can decompose SLA time series better than existing methods and is an effective tool for obtaining short-term SLA prediction.
基金supported by the National Key Research and Development Program of China (No. 2021YFB3300503)Regional Innovation and Development Joint Fund of National Natural Science Foundation of China (No. U22A20167)National Natural Science Foundation of China (No. 61872260).
文摘Long-term multivariate time series forecasting is an important task in engineering applications. It helps grasp the future development trend of data in real-time, which is of great significance for a wide variety of fields. Due to the non-linear and unstable characteristics of multivariate time series, the existing methods encounter difficulties in analyzing complex high-dimensional data and capturing latent relationships between multivariates in time series, thus affecting the performance of long-term prediction. In this paper, we propose a novel time series forecasting model based on multilayer perceptron that combines spatio-temporal decomposition and doubly residual stacking, namely Spatio-Temporal Decomposition Neural Network (STDNet). We decompose the originally complex and unstable time series into two parts, temporal term and spatial term. We design temporal module based on auto-correlation mechanism to discover temporal dependencies at the sub-series level, and spatial module based on convolutional neural network and self-attention mechanism to integrate multivariate information from two dimensions, global and local, respectively. Then we integrate the results obtained from the different modules to get the final forecast. Extensive experiments on four real-world datasets show that STDNet significantly outperforms other state-of-the-art methods, which provides an effective solution for long-term time series forecasting.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11102114,11172179 and 11332006)the Inovation Program of Shanghai Municipal Education Commission(Grant No.13YZ124)
文摘In this paper, with consideration of the nonlinear and non-stationary properties of the temperature time series, we employ the Hilbert-Huang Transform, based on the empirical mode decomposition(EMD), to analyze the temperature time series from 1959 to 2012 in the Fengxian district of Shanghai, obtained from a certain monitoring station. The oscillating mode is drawn from the data, and its characteristics of the time series are investigated. The results show that the intrinsic modes of 1, 2 and 6 represent the periodic properties of 1 year, 2.5 years, and 27 years. The mean temperature shows periodic variations, but the main trend of this fluctuation is the rising of the temperature in the recent 50 years. The analysis of the reconstructed modes with the wave pattern shows that the variations are quite large from 1963 to 1964, from 1977 to 1982 and from 2003 to 2006, which indicates that the temperature rises and falls dramatically in these periods. The volatility from 1993 to 1994 is far more dramatic than in other periods. And the volatility is the most remarkable in recent 50 years. The log-linear plots of the mean time scales T and M show that each mode associated with a time scale almost twice as large as the time scale of the preceding mode. The Hilbert spectrum shows that the energy is concentrated in the range of low frequency from 0.05 to 0.1 Hz, and a very small amount of energy is distributed in the range of higher frequency over 0.1 Hz. In conclusion, the HHT is better than other traditional signal analysis methods in processing the nonlinear signals to obtain the periodic variation and volatility's properties of different time scales.
基金supported by the Social Science Foundation of China under Grant No.17BGL231。
文摘On the basis of machine leaning,suitable algorithms can make advanced time series analysis.This paper proposes a complex k-nearest neighbor(KNN)model for predicting financial time series.This model uses a complex feature extraction process integrating a forward rolling empirical mode decomposition(EMD)for financial time series signal analysis and principal component analysis(PCA)for the dimension reduction.The information-rich features are extracted then input to a weighted KNN classifier where the features are weighted with PCA loading.Finally,prediction is generated via regression on the selected nearest neighbors.The structure of the model as a whole is original.The test results on real historical data sets confirm the effectiveness of the models for predicting the Chinese stock index,an individual stock,and the EUR/USD exchange rate.
基金National Social Science Foundation of China(No.18AGL028)Social Science Foundation of the Higher Education Institutions of Jiangsu Province,China(No.2018SJZDI070)Social Science Foundations of the Jiangsu Province,China(Nos.16ZZB004,17ZTB005)
文摘The effective supply of electricity is the basis of ensuring economic development and people's normal life. It is difficult to store electricity, as leading to the production and consumption must be completed simultaneously. Therefore, it is of great significance to accurately predict the demand for electricity consumption for the production planning of electricity and the normal operation of the society. In this paper, a hybrid model is constructed to predict the electricity consumption in China. The structural breaks test of monthly electricity consumption in China from January 2010 to December 2016 is carried out by using the structural breaks unit root test. Based on the existence of structura breaks, the electricity consumption data are decomposed into low-frequency and high-frequency components by wavelet model, and the separated low frequency signal and high frequency signal are predicted by autoregressive integrated moving average(ARIMA) and nonlinear autoregressive neural network(NAR), respectively. Therefore the wavelet-ARIMA-NAR hybrid model is constructed. In order to compare the effect of the hybrid model, the structural time series(STS) model is applied to predicting the electricity consumption. The results of prediction error test show that the hybrid model is more accurate for electricity consumption prediction.
基金financially supported by the National Natural Sciences Foundation of China(42261026,41971094,and 42161025)Gansu Science and Technology Research Project(22ZD6FA005)+1 种基金Higher Education Innovation Foundation of Education Department of Gansu Province(2022A-041)the open foundation of Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone(XJYS0907-2023-01).
文摘The Qilian Mountains(QM)possess a delicate vegetation ecosystem,amplifying the evident response of vegetation phenology to climate change.The relationship between changes in vegetation growth and climate remains complex.To this end,we used MODIS NDVI data to extract the phenological parameters of the vegetation including meadow(MDW),grassland(GSD),and alpine vegetation(ALV))in the QM from 2002 to 2021.Then,we employed path analysis to reveal the direct and indirect impacts of seasonal climate change on vegetation phenology.Additionally,we decomposed the vegetation phenology in a time series using the trigonometric seasonality,Box-Cox transformation,ARMA errors,and Trend Seasonal components model(TBATS).The findings showed a distinct pattern in the vegetation phenology of the QM,characterized by a progressive shift towards an earlier start of the growing season(SOS),a delayed end of the growing season(EOS),and an extended length of the growing season(LOS).The growth cycle of MDW,GSD,and ALV in the QM species is clearly defined.The SOS for MDW and GSD occurred earlier,mainly between late April and August,while the SOS for ALVs occurred between mid-May and mid-August,a one-month delay compared to the other vegetation.The EOS in MDW and GSD were concentrated between late August and April and early September and early January,respectively.Vegetation phenology exhibits distinct responses to seasonal temperature and precipitation patterns.The advancement and delay of SOS were mainly influenced by the direct effect of spring temperatures and precipitation,which affected 19.59%and 22.17%of the study area,respectively.The advancement and delay of EOS were mainly influenced by the direct effect of fall temperatures and precipitation,which affected 30.18%and 21.17%of the area,respectively.On the contrary,the direct effects of temperature and precipitation in summer and winter on vegetation phenology seem less noticeable and were mainly influenced by indirect effects.The indirect effect of winter precipitation is the main factor affecting the advance or delay of SOS,and the area proportions were 16.29%and 23.42%,respectively.The indirect effects of fall temperatures and precipitation were the main factors affecting the delay and advancement of EOS,respectively,with an area share of 15.80%and 21.60%.This study provides valuable insight into the relationship between vegetation phenology and climate change,which can be of great practical value for the ecological protection of the Qinghai-Tibetan Plateau as well as for the development of GSD ecological animal husbandry in the QM alpine pastoral area.
文摘针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟合对趋势项进行预测;其次,对滑坡周期项的影响因素进行分类,采用VMD对原始影响因子序列进行分解获得最优序列;再次,提出一种结合SVR与基于改进Circle多策略的灰狼优化算法CTGWO-SVR(Circle Tactics Grey Wolf Optimizer with SVR)对滑坡周期项进行预测;最后采用时间序列加法模型求出累计位移预测序列,并采用灰色预测的后验证差校验和小概率误差对模型进行评价。实验结果表明,与GA-SVR和GWO-SVR模型相比,CTGWO-SVR的预测精度更高,拟合度达到0.979,均方根误差分别减小了51.47%与59.25%,预测精度等级为一级,可满足滑坡预测的实时性和准确性要求。