A signal optimization model for roundabout was control concept were used to eliminate the conflict points proposed based on dual-ring scheme and two stop lines for left turns and weaving sections at a roundabout. A cy...A signal optimization model for roundabout was control concept were used to eliminate the conflict points proposed based on dual-ring scheme and two stop lines for left turns and weaving sections at a roundabout. A cycle length minimization problem was considered to generate optimal signal timings for roundabout, and a set of constraints to ensure feasibility and safety of the resulting optimal signal settings were proposed. Extensive experimental analyses in comparison with signalized intersection reveal that the proposed model is quite promising for application in design of roundabout signals, and the minimum cycle length can decrease from 186 s to 79 s while the capacity increases from 8 682 pcu/h to 9 011 pcu/h under high demand scenario. Sensitivity analysis with respect to the system performance show that the lane assignment plan, number of circulatory lanes and left turn ratio are three critical factors which have dominate impacts on performance of signalized roundabout展开更多
Time for single vehicle combat preparation(TSVCP) is an important characteristic parameter for the operational support feature of armored vehicle. During the development phase, how to validate the TSVCP of armored veh...Time for single vehicle combat preparation(TSVCP) is an important characteristic parameter for the operational support feature of armored vehicle. During the development phase, how to validate the TSVCP of armored vehicle through analytic method is a difficult issue in analysis and validation of vehicle supportability.This paper uses Monte Carlo approach and builds a working model for single vehicle combat preparation(SVCP)of armored vehicle, thus realizes the prediction and analysis of the TSVCP of armored vehicle, and finally validates the effectiveness of the approach by example.展开更多
Potential toxicity of transition metals like Hg, Cu and Cd are well known and their affinity toward proteins is of great concern. This work explores the selective nature of interactions of Cu2+, Hg2+ and Cd2+ with ...Potential toxicity of transition metals like Hg, Cu and Cd are well known and their affinity toward proteins is of great concern. This work explores the selective nature of interactions of Cu2+, Hg2+ and Cd2+ with the heme proteins leghemoglobin, myoglobin and cytochrome C. The binding profiles were analyzed using absorbance spectrum and steady-state fluorescence spectroscopy. Thermodynamic parameters like enthalpy, entropy and free energy changes were derived by isothermal calorimetry and consequent binding parameters were compared for these heme proteins. Free energy (AG) values revealed Cu2+ binding toward myoglobin and leghemoglobin to be specific and facile in contrast to weak binding for Hg2+ or Cd2+ . Time correlated single photon counting indicated significant alteration in excited state lifetimes for metal complexed myoglobin and leghemoglobin suggesting bimolecular collisions to be involved. Interestingly, none of these cations showed significant affinity for cytochrome c pointing that, presence of conserved sequences or heme group is not the only criteria for cation binding toward heme proteins, but the microenvironment of the residues or a specific folding pattern may be responsible for these differential conjugation profile. Binding of these cations may modulate the conformation and functions of these biologically important proteins.展开更多
基金Project(51178345) supported by the National Natural Science Foundation of ChinaProject(2011AA110305) supported by the National High Technology Research and Development Program of ChinaProject supported by the Program for Young Excellent Talents in Tongji University, China
文摘A signal optimization model for roundabout was control concept were used to eliminate the conflict points proposed based on dual-ring scheme and two stop lines for left turns and weaving sections at a roundabout. A cycle length minimization problem was considered to generate optimal signal timings for roundabout, and a set of constraints to ensure feasibility and safety of the resulting optimal signal settings were proposed. Extensive experimental analyses in comparison with signalized intersection reveal that the proposed model is quite promising for application in design of roundabout signals, and the minimum cycle length can decrease from 186 s to 79 s while the capacity increases from 8 682 pcu/h to 9 011 pcu/h under high demand scenario. Sensitivity analysis with respect to the system performance show that the lane assignment plan, number of circulatory lanes and left turn ratio are three critical factors which have dominate impacts on performance of signalized roundabout
文摘Time for single vehicle combat preparation(TSVCP) is an important characteristic parameter for the operational support feature of armored vehicle. During the development phase, how to validate the TSVCP of armored vehicle through analytic method is a difficult issue in analysis and validation of vehicle supportability.This paper uses Monte Carlo approach and builds a working model for single vehicle combat preparation(SVCP)of armored vehicle, thus realizes the prediction and analysis of the TSVCP of armored vehicle, and finally validates the effectiveness of the approach by example.
文摘Potential toxicity of transition metals like Hg, Cu and Cd are well known and their affinity toward proteins is of great concern. This work explores the selective nature of interactions of Cu2+, Hg2+ and Cd2+ with the heme proteins leghemoglobin, myoglobin and cytochrome C. The binding profiles were analyzed using absorbance spectrum and steady-state fluorescence spectroscopy. Thermodynamic parameters like enthalpy, entropy and free energy changes were derived by isothermal calorimetry and consequent binding parameters were compared for these heme proteins. Free energy (AG) values revealed Cu2+ binding toward myoglobin and leghemoglobin to be specific and facile in contrast to weak binding for Hg2+ or Cd2+ . Time correlated single photon counting indicated significant alteration in excited state lifetimes for metal complexed myoglobin and leghemoglobin suggesting bimolecular collisions to be involved. Interestingly, none of these cations showed significant affinity for cytochrome c pointing that, presence of conserved sequences or heme group is not the only criteria for cation binding toward heme proteins, but the microenvironment of the residues or a specific folding pattern may be responsible for these differential conjugation profile. Binding of these cations may modulate the conformation and functions of these biologically important proteins.