期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Source time functions of the Gonghe,China earthquake retrieved from long-period digital waveform data using empirical Green's function technique 被引量:6
1
作者 许力生 陈运泰 《Acta Seismologica Sinica(English Edition)》 CSCD 1996年第2期209-222,共14页
An earthquake of Ms= 6, 9 occurred at the Gonghe, Qinghai Province, China on April 26, 1990. Three larger aftershocks took place at the same region, Ms= 5. 0 on May 7, 1990, Ms= 6. 0 on Jan. 3, 1994 and Ms= 5. 7on Feb... An earthquake of Ms= 6, 9 occurred at the Gonghe, Qinghai Province, China on April 26, 1990. Three larger aftershocks took place at the same region, Ms= 5. 0 on May 7, 1990, Ms= 6. 0 on Jan. 3, 1994 and Ms= 5. 7on Feb. 16, 1994. The long-period recordings of the main shock from China Digital Seismograph Network (CDSN) are deconvolved for the source time functions by the correspondent0 recordings of the three aftershocks asempirical Green's functions (EGFs). No matter which aftershock is taken as EGF, the relative source time functions (RSTFs) Obtained are nearly identical. The RSTFs suggest the Ms= 6. 9 event consists of at least two subevents with approximately equal size whose occurrence times are about 30 s apart, the first one has a duration of 12 s and a rise time of about 5 s, and the second one has a duration of 17 s and a rise time of about & s. COmParing the RSTFs obtained from P- and SH-phases respectively, we notice that those from SH-phases are a slightly more complex than those from p-phases, implying other finer subevents exist during the process of the main shock. It is interesting that the results from the EGF deconvolution of long-Period way form data are in good agreement with the results from the moment tensor inversion and from the EGF deconvolution of broadband waveform data. Additionally, the two larger aftershocks are deconvolved for their RSTFs. The deconvolution results show that the processes of the Ms= 6. 0 event on Jan. 3, 1994 and the Ms= 5. 7 event on Feb. 16,1994 are quite simple, both RSTFs are single impulses.The RSTFs of the Ms= 6. 9 main shock obtained from different stations are noticed to be azimuthally dependent, whose shapes are a slightly different with different stations. However, the RSTFs of the two smaller aftershocks are not azimuthally dependent. The integrations of RSTFs over the processes are quite close to each other, i. e., the scalar seismic moments estimated from different stations are in good agreement. Finally the scalar seismic moments of the three aftershocks are compared. The relative scalar seismic moment Of the three aftershocks deduced from the relative scalar seismic moments of the Ms=6. 9 main shock are very close to those inverted directly from the EGF deconvolution. The relative scalar seismic moment of the Ms =6. 9 main shock calculated using the three aftershocks as EGF are 22 (the Ms= 6. 0 aftershock being EGF), 26 (the Ms= 5. 7 aftershock being EGF) and 66 (the Ms= 5. 5 aftershock being EGF), respectively. Deducingfrom those results, the relative scalar sesimic moments of the Ms= 6. 0 to the Ms= 5. 7 events, the Ms= 6. 0 tothe Ms= 5. 5 events and the Ms= 5. 7 to the Ms= 5. 5 events are 1. 18, 3. 00 and 2. 54, respectively. The correspondent relative scalar seismic moments calculated directly from the waveform recordings are 1. 15, 3. 43, and 3. 05. 展开更多
关键词 Gonghe earthquake empirical Green' function waveform data source time function.
下载PDF
Source time functions of the 1999, Jiji (Chi-Chi) earthquake from GDSN long period waveform data using aftershocks as empirical Green's functions 被引量:1
2
作者 许力生 G.Patau 陈运泰 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2002年第2期121-133,共13页
A large earthquake (Mw=7.6) occurred in Jiji (Chi-Chi), Taiwan, China on September 20, 1999, and was followed by many moderate-size shocks in the following days. Two of the largest aftershocks with the magnitudes of M... A large earthquake (Mw=7.6) occurred in Jiji (Chi-Chi), Taiwan, China on September 20, 1999, and was followed by many moderate-size shocks in the following days. Two of the largest aftershocks with the magnitudes of Mw=6.1 and Mw=6.2, respectively, were used as empirical Green's functions (EGFs) to obtain the source time functions (STFs) of the main shock from long-period waveform data of the Global Digital Seismograph Network (GDSN) including IRIS, GEOSCOPE and CDSN. For the Mw=6.1 aftershock of September 22, there were 97 pairs of phases clear enough from 78 recordings of 26 stations; for the Mw=6.2 aftershock of September 25, there were 81 pairs of phases clear enough from 72 recordings of 24 stations. For each station, 2 types of STFs were retrieved, which are called P-STF and S-STF due to being from P and S phases, respectively. Totally, 178 STF individuals were obtained for source-process analysis of the main shock. It was noticed that, in general, STFs from most of the stations had similarities except that those in special azimuths looked different or odd due to the mechanism difference between the main shock and the aftershocks; and in detail, the shapes of the STFs varied with azimuth. Both of them reflected the stability and reliability of the retrieved STFs. The comprehensive analysis of those STFs suggested that this event consisted of two sub-events, the total duration time was about 26 s, and on the average, the second event was about 7 s later than the first one, and the moment-rate amplitude of the first event was about 15% larger than that of the second one. 展开更多
关键词 Jiji (Chi-chi) earthquake long-period waveform source time function
下载PDF
A Simple Method for Source Depth Estimation with Multi-path Time Delay in Deep Ocean 被引量:2
3
作者 杨坤德 杨秋龙 +1 位作者 郭晓乐 曹然 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期86-90,共5页
A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay ... A method of source depth estimation based on the multi-path time delay difference is proposed. When the minimum time arrivals in all receiver depths are snapped to a certain time on time delay-depth plane, time delay arrivals of surface-bottom reflection and bottom-surface reflection intersect at the source depth. Two hydrophones deployed vertically with a certain interval are required at least. If the receiver depths are known, the pair of time delays can be used to estimate the source depth. With the proposed method the source depth can be estimated successfully in a moderate range in the deep ocean without complicated matched-field calculations in the simulations and experiments. 展开更多
关键词 of on with A Simple Method for source Depth Estimation with Multi-path time Delay in Deep Ocean for in IS source
下载PDF
Source parameters determination for earthquakes in Kushiro,Japan considering source time function
4
作者 Lifen Zhang Wulin Liao +2 位作者 Guichun Wei Jinggang Li Qiuliang Wang 《Earthquake Science》 CSCD 2012年第2期137-142,共6页
This paper applies a new formulation to do moment tensor inversion for earthquakes in the Kushiro area of Japan. Comparing with conventional moment tensor inversion method, the new one takes the effect of source time ... This paper applies a new formulation to do moment tensor inversion for earthquakes in the Kushiro area of Japan. Comparing with conventional moment tensor inversion method, the new one takes the effect of source time function into consideration. For the inversion, best solution is obtained by minimizing the difference between the observed seismograms and the synthetic ones. And the best-fitting focal depth is determined from the variance reduction. The results indicate that half duration of source time function is proportional to the magnitude of earthquakes. Large earthquakes have long half duration, whereas that of moderate-small earthquakes is comparatively shorter. The focal mechanisms of all three earthquakes are of thrust fault type, which is mainly ascribed to the collision of the North American plate with the Eurasia plate in the late Cretaceous or Paleogene. 展开更多
关键词 moment tensor inversion half duration source time function Kushiro
下载PDF
Source Characteristics of the 2012 Ahar-Varzaghan Earthquake
5
作者 Maryam Aminipanah Manouchehr Ghorashi +2 位作者 Mohsen Pourkermani Abdolmajid Asadi Katayoun Behzadafshar 《Open Journal of Geology》 2016年第1期39-46,共8页
The August 11, 2012 M<sub>w</sub> 6.4 earthquakes in northwestern Iran occurred as a result of oblique strike-slip faulting in the shallow crust of the Eurasia plate, approximately 300 kilometer east of th... The August 11, 2012 M<sub>w</sub> 6.4 earthquakes in northwestern Iran occurred as a result of oblique strike-slip faulting in the shallow crust of the Eurasia plate, approximately 300 kilometer east of the plate boundary between the Eurasia and Arabia plates. The seismotectonics of this region is controlled by the collision of the Arabia and Eurasia plates;at the latitude of the earthquakes, the Arabia plate moves almost due north with respect to the Eurasia plate at a rate of approximately 26 millimeter per year. Over the past forty years, seven earthquakes of M<sub>w</sub> 6 or greater have occurred within 300 kilometer of today’s events. The nearest was a M<sub>w</sub> 6.1 earthquake in February of 1997, approximately 100 kilometer to the east, which caused 1100 fatalities. The studied area encourage the authors to determine the focal mechanism, source time function and sub events’ features which can guide us to reliable judges. 展开更多
关键词 Ahar-Varzaghan Earthquake source time Function source Mechanism source Parameters
下载PDF
Tempo-spatial rupture process of the 1997Mani, Xizang(Tibet), China earthquake of Ms=7.9 被引量:9
6
作者 许力生 陈运泰 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第5期495-506,共12页
An earthquake of Ms=7.4 occurred in Mani, Xizang (Tibet), China on November 8, 1997. The moment tensor ofthis earthquake was inverted using the long period body wave form data from China Digital Seismograph Network(CD... An earthquake of Ms=7.4 occurred in Mani, Xizang (Tibet), China on November 8, 1997. The moment tensor ofthis earthquake was inverted using the long period body wave form data from China Digital Seismograph Network(CDSN). The apparent source time functions (AS TFs) were retrieved from P and S waves, respectively, using thedeconvolution technique in frequency domain, and the tempo-spatial rupture process on the fault plane was imagedby inverting the azimuth dependent AS TFs from different stations. The result of the moment tensor inversionindicates that the P and T axes of earthquake-generating stress field were nearly horizontal, with the P axis in theNNE direction (29), the T axis in the SEE direction (122) and that the NEE-SWW striking nodal plane andNNW-SSE striking nodal plane are mainly left-lateral and right-lateral strike-slip, respectively; that this earthquakehad a scalar seismic moment of 3.4xl02o N. .m, and a moment magnitude of Mw=7.6. Taking the aftershock distribution into account, we proposed that the earthquake rupture occurred in the fault plane with the strike of 250,the dip of 88 and the rake of 19. On the basis of the result of the moment tensor inversion, the theoretical seismograms were synthesized, and then the AS T Fs were retrieved by deconvoving the synthetic seismograms fromthe observed seismograms. The A S T Fs retrieved from the P and S waves of different stations identically suggestedthat this earthquake was of a simple time history, whose ASTF can be approximated with a sine function with thehalf period of about 10 s. Inverting the azimuth dependent A S T Fs from P and S waveforms led to the imageshowing the tempo-spatial distribution of the rupture on the fault plane. From the 'remembering' snap-shots, therupture initiated at the western end of the fault, and then propagated eastward and downward, indicating an overallunilateral rupture. However, the slip distribution is non-uniform, being made up of three sub-areas, one in thewestern end, about 10 km deep ('western area'), another about 55 kin away from the western end and about 35 Iondeep ('eastern area'), the third about 30 km away from the western end and around 40 km deep ('central area').The total rupture area was around 70 km long and 60 km wide. From the 'forgetting' snap-shots, the rupturingappeared quite complex, with the slip occurring in different position at different time, and the earthquake being ofthe characteristics of 'healing pulse'. Another point we have to stress is that the locations in which the ruptureinitiated and terminated were not where the main rupture took place. Eventually, the static slip distribution wascalculated, and the largest slip values of the three sub-areas were 956 cm, 743 cm and 1 060 cm, for the western.eastern and central areas, respectively. From the slip distribution, the rupture mainly distributed in the fault about70 km eastern to the epicenter; from the aftershock distribution. however, the aftershocks were very sparse in thewest to the epicenter while densely clustered in the east to the epicenter It indicated that the Maul Ms=7.9 earthquake was resulted from the nearly eastward extension of the NEE-SWW to nearly E-W striking fault in thenorthwestern Tibetan plateau. 展开更多
关键词 Mani earthquake Xizang(Tibet) tempo-spatial rupture process source time function
下载PDF
Spatial and temporal rupture process of the January 26, 2001, Gujarat, India, M_S=7.8 earthquake 被引量:1
7
作者 许力生 陈运泰 高孟潭 《Acta Seismologica Sinica(English Edition)》 CSCD 2002年第5期469-483,共15页
The source parameters, such as moment tensor, focal mechanism, source time function (STF) and temporal-spatial rupture process, were obtained for the January 26, 2001, India, MS=7.8 earthquake by inverting waveform da... The source parameters, such as moment tensor, focal mechanism, source time function (STF) and temporal-spatial rupture process, were obtained for the January 26, 2001, India, MS=7.8 earthquake by inverting waveform data of 27 GDSN stations with epicentral distances less than 90? Firstly, combining the moment tensor inversion, the spatial distribution of intensity, disaster and aftershocks and the orientation of the fault where the earthquake lies, the strike, dip and rake of the seismogenic fault were determined to be 92? 58?and 62? respectively. That is, this earthquake was a mainly thrust faulting with the strike of near west-east and the dipping direction to south. The seismic moment released was 3.51020 Nm, accordingly, the moment magnitude MW was calculated to be 7.6. And then, 27 P-STFs, 22 S-STFs and the averaged STFs of them were determined respectively using the technique of spectra division in frequency domain and the synthetic seismogram as Greens functions. The analysis of the STFs suggested that the earthquake was a continuous event with the duration time of 19 s, starting rapidly and ending slowly. Finally, the temporal-spatial distribution of the slip on the fault plane was imaged from the obtained P-STFs and S-STFs using an time domain inversion technique. The maximum slip amplitude on the fault plane was about 7 m. The maximum stress drop was 30 MPa, and the average one over the whole rupture area was 7 MPa. The rupture area was about 85 km long in the strike direction and about 60 km wide in the down-dip direction, which, equally, was 51 km deep in the depth direction. The rupture propagated 50 km eastwards and 35 km westwards. The main portion of the rupture area, which has the slip amplitude greater than 0.5 m, was of the shape of an ellipse, its major axis oriented in the slip direction of the fault, which indicated that the rupture propagation direction was in accordance with the fault slip direction. This phenomenon is popular for strike-slip faulting, but rather rare for thrust faulting. The eastern portion of the rupture area above the initiation point was larger than the western portion below the initiation point, which was indicative of the asymmetrical rupture. In other words, the rupturing was kind of unilateral from west to east and from down to up. From the snapshots of the slip-rate variation with time and space, the slip rate reached the largest at the 4th second, that was 0.2 m/s, and the rupture in this period occurred only around the initiation point. At the 6th second, the rupture around the initiation point nearly stopped, and started moving outwards. The velocity of the westward rupture was smaller than that of the eastward rupture. Such rupture behavior like a circle mostly stopped near the 15th second. After the 16th second, only some patches of rupture distributed in the outer region. From the snapshots of the slip variation with time and space, the rupture started at the initiation point and propagated outwards. The main rupture on the area with the slip amplitude greater than 5 m extended unilaterally from west to east and from down to up between the 6th and the 10th seconds, and the western segment extended a bit westwards and downwards between the 11th and the 13th seconds. The whole process lasted about 19 s. The rupture velocity over the whole rupture process was estimated to be 3.3 km/s. 展开更多
关键词 focal mechanism source time function temporal-spatial rupture process
下载PDF
A time domain correction method for Doppler-distortion signal from acoustic moving source 被引量:2
8
作者 LIU Fang HE Qingbo +3 位作者 SHEN Changqing HU Fei ZHANG Ao KONG Fanrang 《Chinese Journal of Acoustics》 2014年第1期32-41,共10页
Doppler effect widely exists in the signal from the moving acoustic source. In order to solve such problems as frequency shift and frequency band expansion, a time domain cor- rection method is presented in this paper... Doppler effect widely exists in the signal from the moving acoustic source. In order to solve such problems as frequency shift and frequency band expansion, a time domain cor- rection method is presented in this paper. First, the discrete time vector for interpolation and the amplitude restoration formula is derived based on the moving relationship and the Morse acoustic theory, then the amplitude weights are corrected and the distortion signal is interpolated. Every point of the discrete signal is operated separately in time domain. Compared with the existing frequency domain methods, this method does not need to know the characteristic frequency beforehand and would not be influenced by the blending of the frequency band. Hence, this method can be employed to correct multiple frequency signals and it is also a simple and effective Doppler effect reduction method. 展开更多
关键词 time A time domain correction method for Doppler-distortion signal from acoustic moving source
原文传递
Rupture process of November 6,1988,Lan-cang-Gengma,Yunnan,China,earthquake of M_s=7.6 using empirical Green’s function de-convolution method
9
作者 吴忠良 陈运泰 《Acta Seismologica Sinica(English Edition)》 EI CSCD 1998年第1期1-12,共12页
The empirical Green's function deconvolution technique is applied to the November 6, 1988, Ms=7.6, Yunnan, China earthquake to study the rupture process of this event. An aftershock of Ms=6.3 is taken as the empi... The empirical Green's function deconvolution technique is applied to the November 6, 1988, Ms=7.6, Yunnan, China earthquake to study the rupture process of this event. An aftershock of Ms=6.3 is taken as the empirical Green's function. Recordings of these two events at six stations of China Digital Seismographic Network (CDSN) are employed. Deconvolution results show that this event is a relatively simple event. Directivity analysis indicates that the rupture was initiated at hypocenter and propagated bilaterally and nearly symmetrically towards the northwest and southeast directions with a total length of 70 km and a time duration of 19 s. The rupture velocity is estimated to be about 2.0 km/s. 展开更多
关键词 Lancang Gengma earthquake empirical Green's function source time FUNCTION rupture directivity
下载PDF
Analysis on rupture feature of a great complicated earthquake in Kamchatka
10
作者 高原 郑斯华 +2 位作者 周蕙兰 刘振 吴忠良 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第1期2-7,共6页
The M S=7.3 earthquake of June, 8 1993, off the eastern coast of Kamchatka was very complicated in the rupture history. The rupture feature of this event was discussed by the broadband waveform modelling metho... The M S=7.3 earthquake of June, 8 1993, off the eastern coast of Kamchatka was very complicated in the rupture history. The rupture feature of this event was discussed by the broadband waveform modelling method as well as the combining analysis on the subevent stack and the quasi time difference. The results suggest that the rupture propagation of the event was in a strong unidirection and its main rupture processes can be expressed as: rupture nucleation→NEE→near east by north→near east by south→stop, from deep to shallow. 展开更多
关键词 rupture direction broadband waveform modelling QUASI source time function QUASI time difference
下载PDF
Development of the Multipurpose Timing Instrument Based on BDS
11
作者 Yang Feng Ding Xinjuan +1 位作者 Li Xiaodong Li Jinxiang 《Earthquake Research in China》 CSCD 2017年第2期282-288,共7页
With the increasingly high requirement of clock source accuracy for seismic data servers and equipment,the development of a multipurpose timing system is urgently needed in the seismic industry. We have developed low-... With the increasingly high requirement of clock source accuracy for seismic data servers and equipment,the development of a multipurpose timing system is urgently needed in the seismic industry. We have developed low-cost timing equipment according to the actual earthquake industry situation. This set of timing equipment can provide a unified solution to the different environment and different earthquake instruments with different timing precision demands. 展开更多
关键词 GNSS BDS Clock source Seismic instrument Timing services
下载PDF
Outboard abnormal noise source localization method with curved surface projection based on time delay matching and weighting criterion
12
作者 YU Wenjing HE Lin +2 位作者 CUI Lilin XU Rongwu LI Ruibiao 《Chinese Journal of Acoustics》 CSCD 2018年第4期448-462,共15页
An improved localization method consisting of "filtering-time delay estimationhyperbolic localization" is proposed. Combining the empirical mode decomposition(EMD)and time delay estimation method based on generali... An improved localization method consisting of "filtering-time delay estimationhyperbolic localization" is proposed. Combining the empirical mode decomposition(EMD)and time delay estimation method based on generalized average magnitude difference function,the original signals are decomposed into intrinsic mode function(IMF) components. The energy distribution criterion and spectrum consistency criterion are used to select the IMFs, which can represent the physical characteristics of the source signal. Several sets of signals are applied to estimate the time delay, and then a vector matching criterion is proposed to select the correct time delay estimation. Considering the hydrophones location, a shell model is established and projected to a plane according to the quadrant before the hyperbolic localization. Results of mooring and sailing tests show that the proposed method improves the localization accuracy,and reduces the error caused by time delay estimation. 展开更多
关键词 Outboard abnormal noise source localization method with curved surface projection based on time delay matching and weighting criterion
原文传递
Approximate Maximum Likelihood Algorithm for Moving Source Localization Using TDOA and FDOA Measurements 被引量:28
13
作者 YU Huagang HUANG Gaoming +1 位作者 GAO Jun WU Xinhui 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2012年第4期593-597,共5页
A closed-form approximate maximum likelihood(AML) algorithm for estimating the position and velocity of a moving source is proposed by utilizing the time difference of arrival(TDOA) and frequency difference of arr... A closed-form approximate maximum likelihood(AML) algorithm for estimating the position and velocity of a moving source is proposed by utilizing the time difference of arrival(TDOA) and frequency difference of arrival(FDOA) measurements of a signal received at a number of receivers.The maximum likelihood(ML) technique is a powerful tool to solve this problem.But a direct approach that uses the ML estimator to solve the localization problem is exhaustive search in the solution space,and it is very computationally expensive,and prohibits real-time processing.On the basis of ML function,a closed-form approximate solution to the ML equations can be obtained,which can allow real-time implementation as well as global convergence.Simulation results show that the proposed estimator achieves better performance than the two-step weighted least squares(WLS) approach,which makes it possible to attain the Cramér-Rao lower bound(CRLB) at a sufficiently high noise level before the threshold effect occurs. 展开更多
关键词 approximate maximum likelihood(AML) maximum likelihood(ML) source localization time differences of arrival(TDOA) frequency differences of arrival(FDOA)
原文传递
Image reconstruction of a neutron scatter camera 被引量:1
14
作者 ZHANG XianPeng ZHANG Mei +10 位作者 SHENG Lang ZHANG ZhongBing LI Kui Nian PENG BoDong ZHANG XiaoDong OUYANG XiaoPing LIU Jun LIU JinLiang CHEN Liang ZHU Jie HE ChaHui 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第1期149-155,共7页
Recently, Sandia Laboratories developed a neutron scatter camera to detect special nuclear materials. This camera exhibits the following advantages: high efficiency, direction discrimination, neutron-gamma discriminat... Recently, Sandia Laboratories developed a neutron scatter camera to detect special nuclear materials. This camera exhibits the following advantages: high efficiency, direction discrimination, neutron-gamma discrimination ability, and wide field of view. However, using the direct projection method, the angular resolution of this camera is limited by uncertainties in the energies estimated from pulse height and time of flight measurements. In this study, we established an eight-element neutron scatter camera and conducted the experiment with a ^(252)Cf neutron source. The results show that it has an angular resolution better than 8°(1s) and a detection efficiency of approximately 2.6′10-4. Using maximum likelihood expectation maximization method, the image artifact was eliminated, and the angular resolution was improved. We proposed an average scattering angle method to estimate the scattering energy of neutrons and Compton gamma rays. As such, we can obtain a recognizable image and energy spectrum of the source with some degradation of energy and image resolutions. Finally, a newly measured light response function based on the MPD^(-4) device was used for image reconstruction. Although we did not obtain a better result than that of the standard light response function, we have observed the effects of light response function on image reconstruction. 展开更多
关键词 neutron scatter camera ^(252)Cf neutron source energy reconstruction image reconstruction maximum likelihood expectation maximization time of flight light response function
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部