Noise pollution is one of the common physical harmful factors in many work environments.The current study aimed to assess personal and environmental sound pressure level and project the sound-Isosonic map in one of th...Noise pollution is one of the common physical harmful factors in many work environments.The current study aimed to assess personal and environmental sound pressure level and project the sound-Isosonic map in one of the Razavi Khorasan Paste manufacture using Surfer V.14 and Noise at work V.5.0.This cross-sectional,descrip-tive study is analytical that was conducted in 2018 in the Paste factory that contains Canister,production and Brewing unit.Following ISO 9612:2009,Casella Cel-320 was used to measure personal sound pressure level,while CEL-450 sound level meter(manufactured by Casella-Cel,the UK)was employed to assess environmental sound pressure level.Statistical analyzes was done using SPSS V.18 and Linear Regression test.The sound-isosonic maps were projected using Surfer V.14 and Noise at work V.5.0.The results of assessing personal sound pressure level indicated that the highest received dose(172.21%)and personal equivalent sound level(87.36 dBA)were recorded for workers in the Canister unit.According to results of measuring of the environmental sound pressure level,out of 16 measurement stations in this unit,overall 87.5%were regarded as danger and caution areas.The lowest and highest sound pressure levels in this units were 61 dBA and 92 dBA that belong to Brewing and Canister units respectively.Results indicate Over 75%of the Canister and production units had a sound pressure level greater than 85 dBA and these two units were regarded as the most dangerous area in terms of noise pollution.It is there-fore necessary to implement noise control measures,apply hearing protection program and auditory tests among workers in these units.展开更多
In real life, when a noise problem occurs, it is important to identify the cause and measure the noise of the source, since it may affect human beings or other constructions due to vibration generated from noise, so i...In real life, when a noise problem occurs, it is important to identify the cause and measure the noise of the source, since it may affect human beings or other constructions due to vibration generated from noise, so it is necessary to determine the noise related to a specific source like a machine in the presence of other sources which is a very important approach in noise control engineering. In this article a full experiment was executed to measure the sound pressure levels of various sources (stationary and non-stationary), in both an anechoic chamber and a non-ideal noisy environment. The sound pressure level was extracted for different sources and compared for both ideal and non-ideal environment. The results showed that acoustical free field of the space is the best field to do measurements to avoid reflection, on the other hand the difference between the source and the background should be more than 3 dB to get better results.展开更多
Exposure to noise can lead to anatomical,nonauditory,and auditory impacts.The auditory influence of noise exposure is manifested in the form of Noise-induced hearing loss(NIHL).The current study aimed at present a sig...Exposure to noise can lead to anatomical,nonauditory,and auditory impacts.The auditory influence of noise exposure is manifested in the form of Noise-induced hearing loss(NIHL).The current study aimed at present a signal to noise ratio model of otoacoustic emission of rats’ears in the light of the combined effect of sound pressure level,sound frequency,exposure time,and potassium concentration of the used water.In total,36 adult male rates,whose age varied from 3 to 4 months and had a weight of 200±50 g,were randomly divided into 12 groups,with each group consisting of 3 rats.The rats in both groups(case and control groups)were exposed to SPLs of 85,95,and 105 dB,emitted from sources that generated white noise.A distortion product otoacoustic emission(DPOAE)machine(4000 I/O manufactured by Homoth of Germany)was utilized to gauge the signal to noise ratio(SNR)of otoacoustic emissions of rats’ears at various frequencies in an acoustic room.The inclusion criterion was SNR≥6 dB.The collected data were fed into the Statistical Package for Social Sciences(SPSS)version 18,followed by conducting descriptive and inferential data analysis procedures.The results of SNR analysis indicated that over 82%of all data had SNRs that were equal to or greater than 6 dB.These data were considered as acceptable response.Furthermore,SPL and sound frequency had significant associations with SNR(P<0.0001).Exposure time also significantly correlated with SNR(P=0.008).However,the potassium concentration of the used water had no significant correlation with SNR(P=0.97).High sound pressure levels result in lower DPOAE.Furthermore,higher frequency leads to higher SNR.On the contrary,longer exposure time reduces SNR.Finally,the potassium concentration of the used water has no effect on SNR.展开更多
Noise pollution is one of the most significant harmful physical factors in the industrial and occupational environments.Due to the high costs of exposure to excessive noise;continuous sound evaluation,propose and impl...Noise pollution is one of the most significant harmful physical factors in the industrial and occupational environments.Due to the high costs of exposure to excessive noise;continuous sound evaluation,propose and implement noise control plans in occupational environments is necessary.Thus,the present study aimed to review environmental sound measurements,drawing of noise maps,and prioritizing the engineering noise control methods using the Analytic Hierarchy Process(AHP).This study was a descriptive-analytical study that aimed to assess occupational noises and present a control plan in the City Gas Stations(CGSs)of Kerman,Iran in 2021.The present study was done in two phases.In the first phase,six CGSs were investigated to measure and evaluate the noise.In addition,the noise map of a CGS was drawn using the Surfer software.Finally,the AHP was used in the second phase of the research to prioritize the control measures.In this phase,four criteria and ten alternatives were identified.According to first phase results,the sound pressure level(SPL)of the stations varied from 76 to 98 dBA.Besides,the majority of the studied stations had a sound level higher than 85 dBA(danger zone).The second phase of the study showed that out of the four evaluated criteria,the executability criterion had the highest impact and the cost criterion had the lowest impact on the selection of control measures with a weight of 0.587 and 0.052,respectively.Based on the results of prioritization of the alternatives,using a silenced regulator(weight of 0.223)and increasing the thickness of the tube(weight of 0.023)had the highest and lowest priorities among the alternatives,respectively.The use of engineering noise control methods such as using silenced regulators was the best way to control the noises of CGSs.Additionally;it is noteworthy that AHP is a practical method for prioritizing alternatives to achieve the most accurate decision-making.The results of AHP can be of great help to health and safety experts and managers in choosing the sound engineering control measures more precisely.展开更多
Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbin...Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.展开更多
The performance of classic Mel-frequency cepstral coefficients (MFCC) is unsatisfactory in noisy environment with different sound sources from nature. In this paper, a classification approach of the ecological environ...The performance of classic Mel-frequency cepstral coefficients (MFCC) is unsatisfactory in noisy environment with different sound sources from nature. In this paper, a classification approach of the ecological environmental sounds using the double-level energy detection (DED) was presented. The DED was used to detect the existence of the sound signals under noise conditions. In addition, MFCC features from the frames which were detected the presence of the sound signals by DED were extracted. Experimental results show that the proposed technology has better noise immunity than classic MFCC, and also outperforms time-domain energy detection (TED) and frequency-domain energy detection (FED) respectively.展开更多
以双层隔振系统为研究对象,建立双层隔振系统的三维有限元模型。在给定的刚度范围内,单独改变设备隔振器刚度值或者底座隔振器刚度值时发现,任意一层隔振器刚度的变化对各级隔振均产生一定的影响。从底座隔振器与设备隔振器刚度比的角...以双层隔振系统为研究对象,建立双层隔振系统的三维有限元模型。在给定的刚度范围内,单独改变设备隔振器刚度值或者底座隔振器刚度值时发现,任意一层隔振器刚度的变化对各级隔振均产生一定的影响。从底座隔振器与设备隔振器刚度比的角度出发,对两层隔振器的刚度进行适配,研究结果表明:在刚度适配时,可能出现振动传递过程中振动放大的情况;当刚度比相同时,在刚度值较小的工况下传递到底座上的振动加速度级比刚度值较大的工况小,同时其整体隔振效果也更好;在所计算的工况中,最优刚度适配工况下的整体隔振效果比最差刚度适配工况提高9.8 dB,传递到底座的振动加速度级降低12.3 d B,辐射声功率级总值降低12.8 dB。展开更多
The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the ...The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.展开更多
In many engineering applications such as mining,geotechnical and petroleum industries,drilling operation is widely used.The drilling operation produces sound by-product,which could be helpful for preliminary estimatio...In many engineering applications such as mining,geotechnical and petroleum industries,drilling operation is widely used.The drilling operation produces sound by-product,which could be helpful for preliminary estimation of the rock properties.Nevertheless,determination of rock properties is very difficult by the conventional methods in terms of high accuracy,and thus it is expensive and timeconsuming.In this context,a new technique was developed based on the estimation of rock properties using dominant frequencies from sound pressure level generated during diamond core drilling operations.First,sound pressure level was recorded and sound signals of these sound frequencies were analyzed using fast Fourier transform (FFT).Rock drilling experiments were performed on five different types of rock samples using computer numerical control (CNC) drilling machine BMV 45 T20.Using simple linear regression analysis,mathematical equations were developed for various rock properties,i.e.uniaxial compressive strength,Brazilian tensile strength,density,and dominant frequencies of sound pressure level.The developed models can be utilized at early stage of design to predict rock properties.展开更多
Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speed...Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speeds. The large eddy simulation (LES) equations and integral formulation of Ffowcs-Williams and Hawings (FW-H) are solved for the cavity with same conditions as experiments. The obtained density-field agrees well with Krishnamurty’s experimental schlieren photograph, which simulates flow-field distributions and the direction of sound wave radiation. The simulated self-sustained oscillation modes inside the cavity agree with Rossiter’s and Heller’s predicated results, which indicate frequency characteristics are obtained. Moreover, the results indicate that the feedback mechanism that new shedding-vortexes induced by propagation of sound wave created by the impingement of the shedding-vortexes in the shear-layer and rear cavity face leads to self-sustained oscillation and high noise inside the cavity. The peak acoustic pressure occurs in the first oscillation mode and the most of sound energy focuses on the low-frequency region.展开更多
Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Mi...Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.展开更多
Basic schools that are located in heavily populated residential and commercial areas in Ghana are exposed to environmental noise that can have detrimental effects on the academic attainments of children. Limited studi...Basic schools that are located in heavily populated residential and commercial areas in Ghana are exposed to environmental noise that can have detrimental effects on the academic attainments of children. Limited studies have been conducted on noise level in basic schools to date in Ghana. The objective of the study was to assess noise levels in and around learning spaces in basic schools in Ghana with </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span></span></span><span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">focus on Kumasi.</span><i> </i><span style="font-family:Verdana;">A survey employing the use of interviews and an empirical monitoring of noise levels in and around learning spaces in four selected basic schools were adopted. The study revealed that mean outdoor and indoor noise levels exceed the World Health Organisation permissible limits by 30 - 40 percent and 90 - 107 percent respectively for schools in the commercial zones and schools that are located near highways. The school that is sited in an educational environment with a setback from the highway attained mean noise levels ranging from 1.2 percent below to 3.7 percent above the permissible limits for outdoor and between 64 - 105 percent for indoor. The outcome of the study is expected to engender the design of environmental noise resilient buildings to facilitate teaching and learning in basic schools in Ghana</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.展开更多
An efficient calibration algorithm for an ambulatory audiometric test system is proposed. This system utilizes a personal digital assistant (PDA) device to generate the correct sound pressure level (SPL) from an audio...An efficient calibration algorithm for an ambulatory audiometric test system is proposed. This system utilizes a personal digital assistant (PDA) device to generate the correct sound pressure level (SPL) from an audiometric transducer such as an earphone. The calibrated sound intensities for an audio-logical examination can be obtained in terms of the sound pressure levels of pure-tonal sinusoidal signals in eight-banded frequency ranges (250, 500, 1 000, 2 000, 3 000, 4 000, 6 000 and 8 000 Hz), and with mapping of the input sound pressure levels by the weight coefficients that are tuned by the delta learning rule. With this scheme, the sound intensities, which evoke eight-banded sound pressure levels by 5 dB steps from a minimum of 25 dB to a maximum of 80 dB, can be generated without volume displacement. Consequently, these sound intensities can be utilized to accurately determine the hearing threshold of a subject in the ambulatory audiometric testing environment.展开更多
On the basis of the sound velocity measurements of the coral reef core from Nanyong No. 1 Well of Yongshu Reef in the Nansha Islands, the paper studies the relations between the vertical sound velocity transition feat...On the basis of the sound velocity measurements of the coral reef core from Nanyong No. 1 Well of Yongshu Reef in the Nansha Islands, the paper studies the relations between the vertical sound velocity transition features in the coral reef core and the corresponding stratigraphic depositional facies change as well as stratigraphic gap of erosion, analyses the cause of the sound velocity transition, expounds the concrete process of the sea level change resulting in the stratigraphic gap of erosion and facies change in the coral reef and explains the relations between the vertical sound velocity transition in the coral reef core and the corresponding stratigraphic paleoclimate and the sea level change. This study is of important practical value and theoretical significance to the island and reef engineering construction and the acoustic logging for oil exploration in the reef limestone area as well as the paleoceanographic study of the marginal sea in the western Pacific Ocean.展开更多
Here the authors examine whether bell sounds can have an impact on ambient aerosol levels and size distribution under atmospheric conditions.The authors present calculation results for acoustic coagulation by church b...Here the authors examine whether bell sounds can have an impact on ambient aerosol levels and size distribution under atmospheric conditions.The authors present calculation results for acoustic coagulation by church bell sounds for a range of ambient aerosol types.The results show that for orthokinetic sonic agglomeration,while the frequency spectrum of church bells is ideal for causing coagulation of ambient aerosols,the sound pressure level(SPL)becomes too low for an effect.However,for very polluted conditions,at extremely short distances from the bell dust aerosols can readily undergo sonic coagulation.展开更多
文摘Noise pollution is one of the common physical harmful factors in many work environments.The current study aimed to assess personal and environmental sound pressure level and project the sound-Isosonic map in one of the Razavi Khorasan Paste manufacture using Surfer V.14 and Noise at work V.5.0.This cross-sectional,descrip-tive study is analytical that was conducted in 2018 in the Paste factory that contains Canister,production and Brewing unit.Following ISO 9612:2009,Casella Cel-320 was used to measure personal sound pressure level,while CEL-450 sound level meter(manufactured by Casella-Cel,the UK)was employed to assess environmental sound pressure level.Statistical analyzes was done using SPSS V.18 and Linear Regression test.The sound-isosonic maps were projected using Surfer V.14 and Noise at work V.5.0.The results of assessing personal sound pressure level indicated that the highest received dose(172.21%)and personal equivalent sound level(87.36 dBA)were recorded for workers in the Canister unit.According to results of measuring of the environmental sound pressure level,out of 16 measurement stations in this unit,overall 87.5%were regarded as danger and caution areas.The lowest and highest sound pressure levels in this units were 61 dBA and 92 dBA that belong to Brewing and Canister units respectively.Results indicate Over 75%of the Canister and production units had a sound pressure level greater than 85 dBA and these two units were regarded as the most dangerous area in terms of noise pollution.It is there-fore necessary to implement noise control measures,apply hearing protection program and auditory tests among workers in these units.
文摘In real life, when a noise problem occurs, it is important to identify the cause and measure the noise of the source, since it may affect human beings or other constructions due to vibration generated from noise, so it is necessary to determine the noise related to a specific source like a machine in the presence of other sources which is a very important approach in noise control engineering. In this article a full experiment was executed to measure the sound pressure levels of various sources (stationary and non-stationary), in both an anechoic chamber and a non-ideal noisy environment. The sound pressure level was extracted for different sources and compared for both ideal and non-ideal environment. The results showed that acoustical free field of the space is the best field to do measurements to avoid reflection, on the other hand the difference between the source and the background should be more than 3 dB to get better results.
基金the output of a research project(registration number:24455)which was financially supported by Tehran University of Medical Sciences.
文摘Exposure to noise can lead to anatomical,nonauditory,and auditory impacts.The auditory influence of noise exposure is manifested in the form of Noise-induced hearing loss(NIHL).The current study aimed at present a signal to noise ratio model of otoacoustic emission of rats’ears in the light of the combined effect of sound pressure level,sound frequency,exposure time,and potassium concentration of the used water.In total,36 adult male rates,whose age varied from 3 to 4 months and had a weight of 200±50 g,were randomly divided into 12 groups,with each group consisting of 3 rats.The rats in both groups(case and control groups)were exposed to SPLs of 85,95,and 105 dB,emitted from sources that generated white noise.A distortion product otoacoustic emission(DPOAE)machine(4000 I/O manufactured by Homoth of Germany)was utilized to gauge the signal to noise ratio(SNR)of otoacoustic emissions of rats’ears at various frequencies in an acoustic room.The inclusion criterion was SNR≥6 dB.The collected data were fed into the Statistical Package for Social Sciences(SPSS)version 18,followed by conducting descriptive and inferential data analysis procedures.The results of SNR analysis indicated that over 82%of all data had SNRs that were equal to or greater than 6 dB.These data were considered as acceptable response.Furthermore,SPL and sound frequency had significant associations with SNR(P<0.0001).Exposure time also significantly correlated with SNR(P=0.008).However,the potassium concentration of the used water had no significant correlation with SNR(P=0.97).High sound pressure levels result in lower DPOAE.Furthermore,higher frequency leads to higher SNR.On the contrary,longer exposure time reduces SNR.Finally,the potassium concentration of the used water has no effect on SNR.
文摘Noise pollution is one of the most significant harmful physical factors in the industrial and occupational environments.Due to the high costs of exposure to excessive noise;continuous sound evaluation,propose and implement noise control plans in occupational environments is necessary.Thus,the present study aimed to review environmental sound measurements,drawing of noise maps,and prioritizing the engineering noise control methods using the Analytic Hierarchy Process(AHP).This study was a descriptive-analytical study that aimed to assess occupational noises and present a control plan in the City Gas Stations(CGSs)of Kerman,Iran in 2021.The present study was done in two phases.In the first phase,six CGSs were investigated to measure and evaluate the noise.In addition,the noise map of a CGS was drawn using the Surfer software.Finally,the AHP was used in the second phase of the research to prioritize the control measures.In this phase,four criteria and ten alternatives were identified.According to first phase results,the sound pressure level(SPL)of the stations varied from 76 to 98 dBA.Besides,the majority of the studied stations had a sound level higher than 85 dBA(danger zone).The second phase of the study showed that out of the four evaluated criteria,the executability criterion had the highest impact and the cost criterion had the lowest impact on the selection of control measures with a weight of 0.587 and 0.052,respectively.Based on the results of prioritization of the alternatives,using a silenced regulator(weight of 0.223)and increasing the thickness of the tube(weight of 0.023)had the highest and lowest priorities among the alternatives,respectively.The use of engineering noise control methods such as using silenced regulators was the best way to control the noises of CGSs.Additionally;it is noteworthy that AHP is a practical method for prioritizing alternatives to achieve the most accurate decision-making.The results of AHP can be of great help to health and safety experts and managers in choosing the sound engineering control measures more precisely.
文摘Within previous EU projects, possible modifications to the engine components have been investigated, that would allow for an optimised aerodynamic or acoustic design of the EGV (exit guide vanes) of the TEC (turbine exit casing). However, the engine weight should not be increased and the aerodynamic performance must be at least the same. This paper compares the sound power level of a state-of-the-art TEC (reference TEC) with typical EGVs with an aerodynamically optimised TEC configuration for the engine operating point approach. It is shown that a significant weight reduction (only bladings considered) and reduction in engine length can be achieved but the sound power level for the fundamental tone (lst blade passing frequency) for this acoustically important operating point is increased. It is also shown that the losses of the aerodynamical optimised EGVs are higher for this off design point but significantly lower at the aero design point. Measurements were conducted in the STTF (subsonic test turbine facility) at the Institute for Thermal Turbo machinery and Machine Dynamics, Graz University of Technology. The inlet guide vanes, the LPT (low pressure turbine) stage, and the EGVs have been designed by MTU Aero Engines.
文摘The performance of classic Mel-frequency cepstral coefficients (MFCC) is unsatisfactory in noisy environment with different sound sources from nature. In this paper, a classification approach of the ecological environmental sounds using the double-level energy detection (DED) was presented. The DED was used to detect the existence of the sound signals under noise conditions. In addition, MFCC features from the frames which were detected the presence of the sound signals by DED were extracted. Experimental results show that the proposed technology has better noise immunity than classic MFCC, and also outperforms time-domain energy detection (TED) and frequency-domain energy detection (FED) respectively.
文摘以双层隔振系统为研究对象,建立双层隔振系统的三维有限元模型。在给定的刚度范围内,单独改变设备隔振器刚度值或者底座隔振器刚度值时发现,任意一层隔振器刚度的变化对各级隔振均产生一定的影响。从底座隔振器与设备隔振器刚度比的角度出发,对两层隔振器的刚度进行适配,研究结果表明:在刚度适配时,可能出现振动传递过程中振动放大的情况;当刚度比相同时,在刚度值较小的工况下传递到底座上的振动加速度级比刚度值较大的工况小,同时其整体隔振效果也更好;在所计算的工况中,最优刚度适配工况下的整体隔振效果比最差刚度适配工况提高9.8 dB,传递到底座的振动加速度级降低12.3 d B,辐射声功率级总值降低12.8 dB。
基金The National Natural Science Foundation of China(No.50975047)
文摘The active control of structural sound radiation in an acoustic enclosure is studied by using distributed point force actuators as the secondary control force, and the control mechanisms for the radiated noise in the cavity are analyzed. A rectangular enclosure involving two simply supported flexible plates is created for this investigation. The characteristics of the primary and secondary sound field and the structural-acoustic coupled system are analyzed, and the optimal control objective for reducing the sound pressure level (SPL) in the cavity is derived. The response of the SPL in the cavity is analyzed and compared when the secondary point force actuators with different locations and parameters are applied to the two flexible plates. The results indicate that the noise in the cavity can be better controlled when some point force actuators are applied to two flexible plates for cooperative control rather than the point force actuators being only applied to the excited flexible plate.
文摘In many engineering applications such as mining,geotechnical and petroleum industries,drilling operation is widely used.The drilling operation produces sound by-product,which could be helpful for preliminary estimation of the rock properties.Nevertheless,determination of rock properties is very difficult by the conventional methods in terms of high accuracy,and thus it is expensive and timeconsuming.In this context,a new technique was developed based on the estimation of rock properties using dominant frequencies from sound pressure level generated during diamond core drilling operations.First,sound pressure level was recorded and sound signals of these sound frequencies were analyzed using fast Fourier transform (FFT).Rock drilling experiments were performed on five different types of rock samples using computer numerical control (CNC) drilling machine BMV 45 T20.Using simple linear regression analysis,mathematical equations were developed for various rock properties,i.e.uniaxial compressive strength,Brazilian tensile strength,density,and dominant frequencies of sound pressure level.The developed models can be utilized at early stage of design to predict rock properties.
文摘Analysis of coupling aerodynamics and acoustics are performed to investigate the self-sustained oscillation and aerodynamic noise in two-dimensional flow past a cavity with length to depth ratio of 2 at subsonic speeds. The large eddy simulation (LES) equations and integral formulation of Ffowcs-Williams and Hawings (FW-H) are solved for the cavity with same conditions as experiments. The obtained density-field agrees well with Krishnamurty’s experimental schlieren photograph, which simulates flow-field distributions and the direction of sound wave radiation. The simulated self-sustained oscillation modes inside the cavity agree with Rossiter’s and Heller’s predicated results, which indicate frequency characteristics are obtained. Moreover, the results indicate that the feedback mechanism that new shedding-vortexes induced by propagation of sound wave created by the impingement of the shedding-vortexes in the shear-layer and rear cavity face leads to self-sustained oscillation and high noise inside the cavity. The peak acoustic pressure occurs in the first oscillation mode and the most of sound energy focuses on the low-frequency region.
文摘Hearing loss is a common military health problem and it is closely related to exposures to impulse noises from blast explosions and weapon firings. In a study based on test data of chinchillas and scaled to humans (Military Medicine, 181: 59-69), an empirical injury model was constructed for exposure to multiple sound impulses of equal intensity. Building upon the empirical injury model, we conduct a mathematical study of the hearing loss injury caused by multiple impulses of non-uniform intensities. We adopt the theoretical framework of viewing individual sound exposures as separate injury causing events, and in that framework, we examine synergy for causing injury (fatigue) or negative synergy (immunity) or independence among a sequence of doses. Starting with the empirical logistic dose-response relation and the empirical dose combination rule, we show that for causing injury, a sequence of sound exposure events are not independent of each other. The phenomenological effect of a preceding event on the subsequent event is always immunity. We extend the empirical dose combination rule, which is applicable only in the case of homogeneous impulses of equal intensity, to accommodate the general case of multiple heterogeneous sound exposures with non-uniform intensities. In addition to studying and extending the empirical dose combination rule, we also explore the dose combination rule for the hypothetical case of independent events, and compare it with the empirical one. We measure the effect of immunity quantitatively using the immunity factor defined as the percentage of decrease in injury probability attributed to the sound exposure in the preceding event. Our main findings on the immunity factor are: 1) the immunity factor is primarily a function of the difference in SELA (A- weighted sound exposure level) between the two sound exposure events;it is virtually independent of the magnitude of the two SELA values as long as the difference is fixed;2) the immunity factor increases monotonically from 0 to 100% as the first dose is varied from being significantly below the second dose, to being moderately above the second dose. The extended dose-response formulation developed in this study provides a theoretical framework for assessing the injury risk in realistic situations.
文摘Basic schools that are located in heavily populated residential and commercial areas in Ghana are exposed to environmental noise that can have detrimental effects on the academic attainments of children. Limited studies have been conducted on noise level in basic schools to date in Ghana. The objective of the study was to assess noise levels in and around learning spaces in basic schools in Ghana with </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span></span></span><span><span><span><span><span style="font-family:""><span style="font-family:Verdana;">focus on Kumasi.</span><i> </i><span style="font-family:Verdana;">A survey employing the use of interviews and an empirical monitoring of noise levels in and around learning spaces in four selected basic schools were adopted. The study revealed that mean outdoor and indoor noise levels exceed the World Health Organisation permissible limits by 30 - 40 percent and 90 - 107 percent respectively for schools in the commercial zones and schools that are located near highways. The school that is sited in an educational environment with a setback from the highway attained mean noise levels ranging from 1.2 percent below to 3.7 percent above the permissible limits for outdoor and between 64 - 105 percent for indoor. The outcome of the study is expected to engender the design of environmental noise resilient buildings to facilitate teaching and learning in basic schools in Ghana</span></span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.
基金supported by the grant of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Chungbuk BIT Research-Oriented University Consortium)
文摘An efficient calibration algorithm for an ambulatory audiometric test system is proposed. This system utilizes a personal digital assistant (PDA) device to generate the correct sound pressure level (SPL) from an audiometric transducer such as an earphone. The calibrated sound intensities for an audio-logical examination can be obtained in terms of the sound pressure levels of pure-tonal sinusoidal signals in eight-banded frequency ranges (250, 500, 1 000, 2 000, 3 000, 4 000, 6 000 and 8 000 Hz), and with mapping of the input sound pressure levels by the weight coefficients that are tuned by the delta learning rule. With this scheme, the sound intensities, which evoke eight-banded sound pressure levels by 5 dB steps from a minimum of 25 dB to a maximum of 80 dB, can be generated without volume displacement. Consequently, these sound intensities can be utilized to accurately determine the hearing threshold of a subject in the ambulatory audiometric testing environment.
基金This project was financially supported by Open Laboratory of Marginal Sea Geology and Paleoenvironment, South China Sea Institute of Oceanology, Chinese Academy of sciences, (No. 6).
文摘On the basis of the sound velocity measurements of the coral reef core from Nanyong No. 1 Well of Yongshu Reef in the Nansha Islands, the paper studies the relations between the vertical sound velocity transition features in the coral reef core and the corresponding stratigraphic depositional facies change as well as stratigraphic gap of erosion, analyses the cause of the sound velocity transition, expounds the concrete process of the sea level change resulting in the stratigraphic gap of erosion and facies change in the coral reef and explains the relations between the vertical sound velocity transition in the coral reef core and the corresponding stratigraphic paleoclimate and the sea level change. This study is of important practical value and theoretical significance to the island and reef engineering construction and the acoustic logging for oil exploration in the reef limestone area as well as the paleoceanographic study of the marginal sea in the western Pacific Ocean.
文摘Here the authors examine whether bell sounds can have an impact on ambient aerosol levels and size distribution under atmospheric conditions.The authors present calculation results for acoustic coagulation by church bell sounds for a range of ambient aerosol types.The results show that for orthokinetic sonic agglomeration,while the frequency spectrum of church bells is ideal for causing coagulation of ambient aerosols,the sound pressure level(SPL)becomes too low for an effect.However,for very polluted conditions,at extremely short distances from the bell dust aerosols can readily undergo sonic coagulation.