Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy...Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.展开更多
The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly co...The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.展开更多
Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the susta...Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the sustainable development of energy and the environment.Herein,a facile collagen microstructure modulation strategy is proposed to construct a nitrogen/oxygen dual-doped hierarchically porous carbon fiber with ultrahigh specific surface area(2788 m^(2)g^(-1))and large pore volume(4.56 cm^(3)g^(-1))via local microfibrous breakage/disassembly of natural structured proteins.Combining operando spectroscopy and density functional theory unveil that the dual-heteroatom doping could effectively regulate the electronic structure of carbon atom framework with enhanced electric conductivity and electronegativity as well as decreased diffusion resistance in favor of rapid pseudocapacitive-dominated Li^(+)-storage(353 mAh g^(-1)at 10 A g^(-1)).Theoretical calculations reveal that the tailored micro-/mesoporous structures favor the rapid charge transfer and ion storage,synergistically realizing high capacity and superior rate performance for NPCF-H cathode(75.0 mAh g^(-1)at 30 A g^(-1)).The assembled device with NPCF-H as both anode and cathode achieves extremely high energy density(200 Wh kg^(-1))with maximum power density(42600 W kg^(-1))and ultralong lifespan(80%capacity retention over 10000 cycles).展开更多
The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of...The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.展开更多
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us...Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)is gifted with fast Na^(+)conductive NASICON structure.But it still suffers from low electronic conductivity and inadequate energy density.Herein,a high-entropy modification strategy is rea...Na_(3)V_(2)(PO_(4))_(3)(NVP)is gifted with fast Na^(+)conductive NASICON structure.But it still suffers from low electronic conductivity and inadequate energy density.Herein,a high-entropy modification strategy is realized by doping V^(3+)site with Ga^(3+)/Cr^(3+)/Al^(3+)/Fe^(3+)/In^(3+)simultaneously(i.e.Na_(3)V_(2-x)(GaCrAlFeIn)_x(PO_(4))_(3);x=0,0.04,0.06,and 0.08)to stimulate the V^(5+)■V^(2+)reversible multi-electron redox.Such configuration high-entropy can effectively suppress the structural collapse,enhance the redox reversibility in high working voltage(4.0 V),and optimize the electronic induced effect.The in-situ X-ray powder diffraction and in-situ electrochemical impedance spectroscopy tests efficaciously confirm the robust structu ral recovery and far lower polarization throughout an entire charge-discharge cycle during 1.6-4.3 V,respectively.Moreover,the density functional theory calculations clarify the stronger metallicity of high-entropy electrode than the bare that is derived from the more mobile free electrons surrounding the vicinity of Fermi level.By grace of high-entropy design and multi-electron transfer reactions,the optimal Na_(3)V_(1.7)(GaCrAlFeIn)_(0.06)(PO_(4))_(3)can exhibit perfect cycling/rate performances(90.97%@5000 cycles@30 C;112 mA h g^(-1)@10 C and 109 mA h g^(-1)@30 C,2.0-4.3 V).Furthermore,it can supply ultra-high185 mA h g^(-1)capacity with fa ntastic energy density(522 W h kg^(-1))in half-cells(1.4-4.3 V),and competitive capacity(121 mA h g^(-1))as well as energy density(402 W h kg^(-1))in full-cells(1.6-4.1 V),demonstrating enormous application potential for sodium-ion batteries.展开更多
In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Th...In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.展开更多
This paper introduces a new technology to fabricate a micro electromagnetic actuator with high energy density without an enclosed magnetic circuit. This technology includes fabricating multi-turns planar micro coils a...This paper introduces a new technology to fabricate a micro electromagnetic actuator with high energy density without an enclosed magnetic circuit. This technology includes fabricating multi-turns planar micro coils and fabricating the thick magnetic (NiFe) core on the silicon wafer. The multi-turns planar micro coils are fabricated by the electroplating method from the surface along the line and by dynamically controlling the current density of the copper electrolytes. In order to fabricate thick NiFe plating,the adhesion properties between the NiFe plating and the silicon substrates are improved by changing the surface roughness of the silicon substrates and increasing the thickness of the seed layer. Furthermore,the micro electromagnetic actuator is tested and the energy density of the actuator is evaluated by force testing. The experiments show that the microactuator is efficient in producing high magnetic energy density and high magnetic force.展开更多
A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 cathode and Si O-C composite anode. The LiNi_(0.8)Co_(0.1)Mn_...A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 cathode and Si O-C composite anode. The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 and Si O-C exhibited excellent electrochemical performance in both half and full cells. Specifically, when integrated into a full cell configuration, a high energy density(280 Wh·kg^(-1)) with excellent rate capability and long cycle life was attained. At 0.5 C, the full cell retained 80% of its initial capacity after 200 charge/discharge cycles, and 60% after 600 cycles, indicating robust structural tolerance for the repeated insertion/extraction of Li^+ ions. The rate performance showed that, at high rate of 1 C and 2 C, 96.8% and 93% of the initial capacity were retained, respectively. The results demonstrate strong potential for the development of high energy density Li-ion batteries for practical applications.展开更多
Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = ...Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = P/v), with different laser power(P) and scanning velocity(v), on the dimensional accuracy and tensile strength of sintered parts. The experimental results indicate that with the constant scanning velocity, the tensile strength of sintered samples increases with an increase in laser energy density; while the dimensional accuracy apparently decreases when the laser energy density is larger than 0.032 J·mm-2. When the laser energy density is 0.024 J·mm-2, the tensile strength shows no obvious change; but when the laser energy density is larger than 0.024 J·mm-2, the sample strength is featured by the initial increase and subsequent decrease with simultaneous increase of both laser power and scanning velocity. In this study, the optimal energy density range for laser sintering is 0.024-0.032 J·mm-2. Moreover, samples with the best tensile strength and dimensional accuracy can be obtained when P = 30-40 W and v = 1.5-2.0 m·s-1. Using the optimized laser energy density, laser power and scanning speed, a complex coated sand mould with clear contour and excellent forming accuracy has been successfully fabricated.展开更多
A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC compo...A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate(ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi.Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction.With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs.展开更多
This paper proves that if the energy density of a harmonic map to a unit sphere varies between two successive half eigenvalues, then it must be one of them. Applying this result to the Gaussian maps of some submanifol...This paper proves that if the energy density of a harmonic map to a unit sphere varies between two successive half eigenvalues, then it must be one of them. Applying this result to the Gaussian maps of some submanifolds, the quantum phenomena of the square length of the second fundamental forms of these submanifolds is obtained. Some related topics are discussed in this note.展开更多
Coal joints and cleats are geological discontinuities that are the most important factors that affect the mechanical responses of a coal mass under stress. The joint and coal mass interaction and the mode of failure d...Coal joints and cleats are geological discontinuities that are the most important factors that affect the mechanical responses of a coal mass under stress. The joint and coal mass interaction and the mode of failure dominate the mechanical behaviour of jointed coal masses, and therefore the stability of coal excavations. The shear or mixed shear/tensile failure changes to tensile failure by increasing the confining pressure, discontinuity length and angle. This paper extends a thermodynamic approach to constitutive modelling of the coal mass by developing local and non-local damage models based on the joint and cleat density and the dip angle. A consistent and rigorous statistical framework is constructed, which incorporates both local and non-local features into the constitutive modelling. This is an important consideration in developing damage constitutive models based on the trajectory of the failure surfaces in a coal mass.An equation is derived to calculate the fracture energy which is a function of the joint density either in a single direction or crossed conditions.展开更多
The dependence on portable devices and electrical vehicles has triggered the awareness on the energy storage systems with ever-growing energy density.Lithium metal batteries(LMBs)has revived and attracted considerable...The dependence on portable devices and electrical vehicles has triggered the awareness on the energy storage systems with ever-growing energy density.Lithium metal batteries(LMBs)has revived and attracted considerable attention due to its high volumetric(2046 m Ah cm-3),gravimetric specific capacity(3862 m Ah g^(-1))and the lowest reduction potential(-3.04 V vs.SHE.).However,during the electrochemical process of lithium anode,the growth of lithium dendrite constitutes the biggest stumbling block on the road to LMBs application.The undesirable dendrite not only limit the Coulombic efficiency(CE)of LMBs,but also cause thermal runaway and other safety issues due to short-circuits.Understanding the mechanisms of lithium nucleation and dendrite growth provides insights to solve these problems.Herein,we summarize the electrochemical models that inherently describe the lithium nucleation and dendrite growth,such as the thermodynamic,electrodeposition kinetics,internal stress,and interface transmission models.Essential parameters of temperature,current density,internal stress and interfacial Li+flux are focused.To improve the LMBs performance,state-of-the-art optimization procedures have been developed and systematically illustrated with the intrinsic regulation principles for better lithium anode stability,including electrolyte optimization,artificial interface layers,threedimensional hosts,external field,etc.Towards practical applications of LMBs,the current development of pouch cell LMBs have been further introduced with different assembly systems and fading mechanism.However,challenges and obstacles still exist for the development of LMBs,such as in-depth understanding and in-situ observation of dendrite growth,the surface protection under extreme condition and the self-healing of solid electrolyte interface.展开更多
(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corros...(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.展开更多
Atlantic salmon Salmo salar were reared at four stocking densities--high density D1 (final density -39 kg/m^3), medium densities DE (-29 kg/m^3) and D3 (~19 kg/m^3), and low density D4 (-12 kg/m^3)- for 40 day...Atlantic salmon Salmo salar were reared at four stocking densities--high density D1 (final density -39 kg/m^3), medium densities DE (-29 kg/m^3) and D3 (~19 kg/m^3), and low density D4 (-12 kg/m^3)- for 40 days to investigate the effect of stocking density on their growth performance, body composition and energy budgets. Stocking density did not significantly affect specific growth rate in terms of weight (SGRw) but did affect specific growth rate in terms of energy (SGRe). Stocking density significantly influenced the ration level (RLw and RLe), feed conversion ratio (FCRw and FCRe) and apparent digestibility rate (ADR). Ration level and FCRw tended to increase with increasing density. Fish at the highest density D~ and lowest density D4 showed lower FCRe and higher ADR than at medium densities. Stocking density significantly affected protein and energy contents of the body but did not affect its moisture, lipid, or ash contents. The expenditure of energy for metabolism in the low-density and high-density groups was lower than that in the medium-density groups. Stocking density affected energy utilization from the feces but had no effect on excretion rate. The greater energy allocation to growth at high density and low density may be attributed to reduced metabolic rate and increased apparent digestibility rate. These findings provide information that will assist selection of suitable stocking densities in the Atlantic-salmon-farming industry.展开更多
Ultrafast imaging tools are of great importance for determining the dynamic density distribution in high energy density(HED)matter.In this work,we designed a high energy electron radiography(HEER)system based on a lin...Ultrafast imaging tools are of great importance for determining the dynamic density distribution in high energy density(HED)matter.In this work,we designed a high energy electron radiography(HEER)system based on a linear electron accelerator to evaluate its capability for imaging HED matter.40 MeV electron beams were used to image an aluminum target to study the density resolution and spatial resolution of HEER.The results demonstrate a spatial resolution of tens of micrometers.The interaction of the beams with the target and the beam transport of the transmitted electrons are further simulated with EGS5 and PARMELA codes,with the results showing good agreement with the experimental resolution.Furthermore,the experiment can be improved by adding an aperture at the Fourier plane.展开更多
Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of dose-up diets on dry m...Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of dose-up diets on dry matter intake (DMI), lactation performance and energy balance (EB) in multiparous Holstein cows which were housed in a free-stall barn and fed for ad libitum intake. Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet [HD, n = 13; 6.8 MJ of net energy for lactation (NEL)/kg; 14.0% crude protein (CP) ], or a middle energy density diet (MD, n = 13; 6.2 MJ NEh/kg; 14.0% CP), or a low energy density diet (LD, n = 13; 5.4 MJ NEh/kg; 14.0% CP) from d 21 before expected day of calving. After parturition, all cows were fed the same lactation diet to d 70 in milk (DIM). The DMI and NEE intake prepartum were decreased by the reduced energy density diets (P 〈 0.05). The LD group consumed 1.3 last 24 h before calving. The milk yield and the postpartum kg/d (DM) more diet compared with HD group in the DMI were increased by the reduced energy density diet prepartum (P 〈 0.05). The changes in BCS and BW prepartum and postpartum were not affected by prepartum diets HD group had higher milk fat content and lower lactose content compared with LD group during the first 3 wk of lactation (P 〈 0.05). The energy consumption for HD, MD and LD groups were 149.8%, 126.2% and 101.1 % of their calculated energy requirements prepartum (P 〈 0.05), and 72.7%, 73.1% and 7.5.2% during the first 4 wk postpartum, respectively. In conclusion, the low energy density prepartum diet was effective in controlling NF_L intake prepartum, and was beneficial in increasing DMI and milk yield, and alleviating negative EB postpartum.展开更多
Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.A...Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.展开更多
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金supported by the Energy Efficiency and Renewable Energy,Building Technologies Program,of the US Department of Energy,under contract no.DE-AC02-05CH11231the support on the DSC/TGA 3+supported by the Office of Science,Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231
文摘Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.
基金financially supported by the National Natural Science Foundation of China(No.51933007,No.52373047,No.52302106)the Sichuan Youth Science and Technology Innovation Research Team Project(No.2022JDTD0012)+2 种基金the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No.2020SCUNG203)the Natural Science Foundation of Sichuan Province(No.2023NSFSC0418)the Program for State Key Laboratory of Polymer Materials Engineering(No.sklpme2022-3-10)。
文摘The tireless pursuit of supercapacitors with high energy density entails the parallel advancement of wellsuited electrode materials and elaborately engineered architectures.Polypyrrole(PPy)emerges as an exceedingly conductive polymer and a prospective pseudocapacitive materials for supercapacitors,yet the inferior cyclic stability and unpredictable polymerization patterns severely impede its real-world applicability.Here,for the first time,an innovative seed-induced in-situ polymerization assisted 3D printing strategy is proposed to fabricate PPy-reduced graphene oxide/poly(vinylidene difluoride-cohexafluoropropylene)(PVDF-HFP)(PPy-rGO/PH)electrodes with controllable polymerization behavior and exceptional areal mass loading.The preferred active sites uniformly pre-planted on the 3D-printed graphene substrates serve as reliable seeds to induce efficient polypyrrole deposition,achieving an impressive mass loading of 185.6 mg cm^(-2)(particularly 79.2 mg cm^(-2)for polypyrrole)and a superior areal capacitance of 25.2 F cm^(-2)at 2 mA cm^(-2)for a 12-layer electrode.In agreement with theses appealing features,an unprecedented areal energy density of 1.47 mW h cm^(-2)for a symmetrical device is registered,a rarely achieved value for other PPy/rGO-based supercapacitors.This work highlights a promising route to preparing high energy density energy storage modules for real-world applications.
基金financial support from the National Natural Science Foundation of China(21878192 and 51904193)the Fundamental Research Funds for the Central Universities(YJ2021141)the Science and Technology Cooperation Special Fund of Sichuan University and Zigong City(2021CDZG-14)
文摘Efficient energy storage devices with suitable electrode materials,that integrate high power and high energy,are the crucial requisites of the renewable power source,which have unwrapped new possibilities in the sustainable development of energy and the environment.Herein,a facile collagen microstructure modulation strategy is proposed to construct a nitrogen/oxygen dual-doped hierarchically porous carbon fiber with ultrahigh specific surface area(2788 m^(2)g^(-1))and large pore volume(4.56 cm^(3)g^(-1))via local microfibrous breakage/disassembly of natural structured proteins.Combining operando spectroscopy and density functional theory unveil that the dual-heteroatom doping could effectively regulate the electronic structure of carbon atom framework with enhanced electric conductivity and electronegativity as well as decreased diffusion resistance in favor of rapid pseudocapacitive-dominated Li^(+)-storage(353 mAh g^(-1)at 10 A g^(-1)).Theoretical calculations reveal that the tailored micro-/mesoporous structures favor the rapid charge transfer and ion storage,synergistically realizing high capacity and superior rate performance for NPCF-H cathode(75.0 mAh g^(-1)at 30 A g^(-1)).The assembled device with NPCF-H as both anode and cathode achieves extremely high energy density(200 Wh kg^(-1))with maximum power density(42600 W kg^(-1))and ultralong lifespan(80%capacity retention over 10000 cycles).
基金Financial support from the National Natural Science Foundation of China(22075016 and 22103057)Fundamental Research Funds for the Central Universities(FRF-TP-20-020A3 and QNXM20220060)+1 种基金Interdisciplinary Research Project for Young Teachers of USTB(FRF-IDRY-21-011)111 Project(B170003 and B12015)
文摘The development of high-energy and long-lifespan NASICON-type cathode materials for sodium-ion batteries has always been a research hotspot but a daunting challenge.Although Na_(4)MnCr(PO_(4))_(3)has emerged as one of the most promising high-energy-density cathode materials owing to its three-electron reactions,it still suffers from serious structural distortion upon repetitive charge/discharge processes caused by the Jahn-Teller active Mn^(3+).Herein,the selective substitution of Cr by Zr in Na_(4)MnCr(PO_(4))_(3)was explored to enhance the structural stability,due to the pinning effect of Zr ions and the≈2.9-electron reactions,as-prepared Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C delivers a high capacity retention of 85.94%over 500 cycles at 5 C and an ultrahigh capacity of 156.4 mAh g^(-1)at 0.1 C,enabling the stable energy output as high as 555.2 Wh kg^(-1).Moreover,during the whole charge/discharge process,a small volume change of only 6.7%was verified by in situ X-ray diffraction,and the reversible reactions of Cr^(3+)/Cr^(4+),Mn^(3+)/Mn^(4+),and Mn^(2+)/Mn^(3+)redox couples were identified via ex situ X-ray photoelectron spectroscopy analyses.Galvanostatic intermittent titration technique tests and density functional theory calculations further demonstrated the fast reaction kinetics of the Na_(3.9)MnCr_(0.9)Zr_(0.1)(PO_(4))_(3)/C electrode.This work offers new opportunities for designing high-energy and high-stability NASICON cathodes by ion doping.
基金supported by the National Key Research and Development Program of China,China(2019YFA0705102)the National Natural Science Foundation of China,China(22179144,22005332)。
文摘Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes.
基金financially supported by the National Key Research and Development Program of China (2022YFA1505700,2019YFA0210403)the National Natural Science Foundation of China (52102216)+1 种基金the Natural Science Foundation of Fujian Province (2022J01625,2022-S-002)the Innovation Training Program for College Students (202310394020,cxxl-2023097,cxxl-2024131,cxxl-2024136)。
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)is gifted with fast Na^(+)conductive NASICON structure.But it still suffers from low electronic conductivity and inadequate energy density.Herein,a high-entropy modification strategy is realized by doping V^(3+)site with Ga^(3+)/Cr^(3+)/Al^(3+)/Fe^(3+)/In^(3+)simultaneously(i.e.Na_(3)V_(2-x)(GaCrAlFeIn)_x(PO_(4))_(3);x=0,0.04,0.06,and 0.08)to stimulate the V^(5+)■V^(2+)reversible multi-electron redox.Such configuration high-entropy can effectively suppress the structural collapse,enhance the redox reversibility in high working voltage(4.0 V),and optimize the electronic induced effect.The in-situ X-ray powder diffraction and in-situ electrochemical impedance spectroscopy tests efficaciously confirm the robust structu ral recovery and far lower polarization throughout an entire charge-discharge cycle during 1.6-4.3 V,respectively.Moreover,the density functional theory calculations clarify the stronger metallicity of high-entropy electrode than the bare that is derived from the more mobile free electrons surrounding the vicinity of Fermi level.By grace of high-entropy design and multi-electron transfer reactions,the optimal Na_(3)V_(1.7)(GaCrAlFeIn)_(0.06)(PO_(4))_(3)can exhibit perfect cycling/rate performances(90.97%@5000 cycles@30 C;112 mA h g^(-1)@10 C and 109 mA h g^(-1)@30 C,2.0-4.3 V).Furthermore,it can supply ultra-high185 mA h g^(-1)capacity with fa ntastic energy density(522 W h kg^(-1))in half-cells(1.4-4.3 V),and competitive capacity(121 mA h g^(-1))as well as energy density(402 W h kg^(-1))in full-cells(1.6-4.1 V),demonstrating enormous application potential for sodium-ion batteries.
文摘In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe.
文摘This paper introduces a new technology to fabricate a micro electromagnetic actuator with high energy density without an enclosed magnetic circuit. This technology includes fabricating multi-turns planar micro coils and fabricating the thick magnetic (NiFe) core on the silicon wafer. The multi-turns planar micro coils are fabricated by the electroplating method from the surface along the line and by dynamically controlling the current density of the copper electrolytes. In order to fabricate thick NiFe plating,the adhesion properties between the NiFe plating and the silicon substrates are improved by changing the surface roughness of the silicon substrates and increasing the thickness of the seed layer. Furthermore,the micro electromagnetic actuator is tested and the energy density of the actuator is evaluated by force testing. The experiments show that the microactuator is efficient in producing high magnetic energy density and high magnetic force.
基金financially supported by National R&D Program of China (No. 2016YFB0100301)
文摘A high-energy-density Li-ion battery with excellent rate capability and long cycle life was fabricated with a Ni-rich layered LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 cathode and Si O-C composite anode. The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 and Si O-C exhibited excellent electrochemical performance in both half and full cells. Specifically, when integrated into a full cell configuration, a high energy density(280 Wh·kg^(-1)) with excellent rate capability and long cycle life was attained. At 0.5 C, the full cell retained 80% of its initial capacity after 200 charge/discharge cycles, and 60% after 600 cycles, indicating robust structural tolerance for the repeated insertion/extraction of Li^+ ions. The rate performance showed that, at high rate of 1 C and 2 C, 96.8% and 93% of the initial capacity were retained, respectively. The results demonstrate strong potential for the development of high energy density Li-ion batteries for practical applications.
基金financially supported by the National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,Aeronautical Science Foundation of China(Grant No.2011ZE56007)the Natural Science Foundation of Jiangxi Province(Grant No.2010GZC0159)the High Technology Landing Program of Jiangxi University(Grant No.DB201303014)
文摘Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = P/v), with different laser power(P) and scanning velocity(v), on the dimensional accuracy and tensile strength of sintered parts. The experimental results indicate that with the constant scanning velocity, the tensile strength of sintered samples increases with an increase in laser energy density; while the dimensional accuracy apparently decreases when the laser energy density is larger than 0.032 J·mm-2. When the laser energy density is 0.024 J·mm-2, the tensile strength shows no obvious change; but when the laser energy density is larger than 0.024 J·mm-2, the sample strength is featured by the initial increase and subsequent decrease with simultaneous increase of both laser power and scanning velocity. In this study, the optimal energy density range for laser sintering is 0.024-0.032 J·mm-2. Moreover, samples with the best tensile strength and dimensional accuracy can be obtained when P = 30-40 W and v = 1.5-2.0 m·s-1. Using the optimized laser energy density, laser power and scanning speed, a complex coated sand mould with clear contour and excellent forming accuracy has been successfully fabricated.
基金supported by the Natural Science Foundation of Guangdong Province (Grant No.2017B030306013)the key project of Science and Technology in Guangdong Province (Grant No.2017A010106006)
文摘A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate(ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi.Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction.With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs.
基金Research supported by the NNSF of China (10071021)
文摘This paper proves that if the energy density of a harmonic map to a unit sphere varies between two successive half eigenvalues, then it must be one of them. Applying this result to the Gaussian maps of some submanifolds, the quantum phenomena of the square length of the second fundamental forms of these submanifolds is obtained. Some related topics are discussed in this note.
文摘Coal joints and cleats are geological discontinuities that are the most important factors that affect the mechanical responses of a coal mass under stress. The joint and coal mass interaction and the mode of failure dominate the mechanical behaviour of jointed coal masses, and therefore the stability of coal excavations. The shear or mixed shear/tensile failure changes to tensile failure by increasing the confining pressure, discontinuity length and angle. This paper extends a thermodynamic approach to constitutive modelling of the coal mass by developing local and non-local damage models based on the joint and cleat density and the dip angle. A consistent and rigorous statistical framework is constructed, which incorporates both local and non-local features into the constitutive modelling. This is an important consideration in developing damage constitutive models based on the trajectory of the failure surfaces in a coal mass.An equation is derived to calculate the fracture energy which is a function of the joint density either in a single direction or crossed conditions.
基金supported by the National Natural Science Foundation of China(51804290,22075025)the Beijing Natural Science Foundation(L182023)+1 种基金the Science and Technology Project of Global Energy Interconnection Research Institute Co.Ltd.(SGGR0000WLJS1900858)the Beijing Institute of Technology Research Fund Program for Young Scholars(2019CX04092)。
文摘The dependence on portable devices and electrical vehicles has triggered the awareness on the energy storage systems with ever-growing energy density.Lithium metal batteries(LMBs)has revived and attracted considerable attention due to its high volumetric(2046 m Ah cm-3),gravimetric specific capacity(3862 m Ah g^(-1))and the lowest reduction potential(-3.04 V vs.SHE.).However,during the electrochemical process of lithium anode,the growth of lithium dendrite constitutes the biggest stumbling block on the road to LMBs application.The undesirable dendrite not only limit the Coulombic efficiency(CE)of LMBs,but also cause thermal runaway and other safety issues due to short-circuits.Understanding the mechanisms of lithium nucleation and dendrite growth provides insights to solve these problems.Herein,we summarize the electrochemical models that inherently describe the lithium nucleation and dendrite growth,such as the thermodynamic,electrodeposition kinetics,internal stress,and interface transmission models.Essential parameters of temperature,current density,internal stress and interfacial Li+flux are focused.To improve the LMBs performance,state-of-the-art optimization procedures have been developed and systematically illustrated with the intrinsic regulation principles for better lithium anode stability,including electrolyte optimization,artificial interface layers,threedimensional hosts,external field,etc.Towards practical applications of LMBs,the current development of pouch cell LMBs have been further introduced with different assembly systems and fading mechanism.However,challenges and obstacles still exist for the development of LMBs,such as in-depth understanding and in-situ observation of dendrite growth,the surface protection under extreme condition and the self-healing of solid electrolyte interface.
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB0606104)the National Natural Science Foundation of China(No.51702332).
文摘(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.
基金Supported by the National Natural Science Foundation of China(No.31240012)the Earmarked Fund for Modern Agro-industry Technology Research System+2 种基金the Special Foundation for Postdoctoral Innovative Projects of Shandong Province(No.201101009)the National Key Technology R&D Program of China(No.2011BAD13B04)The Key Laboratory of Mariculture(KLM),Ministry of Education,Ocean University of China(OUC)
文摘Atlantic salmon Salmo salar were reared at four stocking densities--high density D1 (final density -39 kg/m^3), medium densities DE (-29 kg/m^3) and D3 (~19 kg/m^3), and low density D4 (-12 kg/m^3)- for 40 days to investigate the effect of stocking density on their growth performance, body composition and energy budgets. Stocking density did not significantly affect specific growth rate in terms of weight (SGRw) but did affect specific growth rate in terms of energy (SGRe). Stocking density significantly influenced the ration level (RLw and RLe), feed conversion ratio (FCRw and FCRe) and apparent digestibility rate (ADR). Ration level and FCRw tended to increase with increasing density. Fish at the highest density D~ and lowest density D4 showed lower FCRe and higher ADR than at medium densities. Stocking density significantly affected protein and energy contents of the body but did not affect its moisture, lipid, or ash contents. The expenditure of energy for metabolism in the low-density and high-density groups was lower than that in the medium-density groups. Stocking density affected energy utilization from the feces but had no effect on excretion rate. The greater energy allocation to growth at high density and low density may be attributed to reduced metabolic rate and increased apparent digestibility rate. These findings provide information that will assist selection of suitable stocking densities in the Atlantic-salmon-farming industry.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11435015 and 11505251)the Ministry of Science and Technology of China(Grant No.2016YFE0104900)the Chinese Academy of Sciences(Grant Nos.28Y740010 and 113462KYSB20160036)
文摘Ultrafast imaging tools are of great importance for determining the dynamic density distribution in high energy density(HED)matter.In this work,we designed a high energy electron radiography(HEER)system based on a linear electron accelerator to evaluate its capability for imaging HED matter.40 MeV electron beams were used to image an aluminum target to study the density resolution and spatial resolution of HEER.The results demonstrate a spatial resolution of tens of micrometers.The interaction of the beams with the target and the beam transport of the transmitted electrons are further simulated with EGS5 and PARMELA codes,with the results showing good agreement with the experimental resolution.Furthermore,the experiment can be improved by adding an aperture at the Fourier plane.
基金financially supported by National Natural Science Foundation of China(31272469,31372334)China Agriculture Research System(CARS-37)
文摘Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of dose-up diets on dry matter intake (DMI), lactation performance and energy balance (EB) in multiparous Holstein cows which were housed in a free-stall barn and fed for ad libitum intake. Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet [HD, n = 13; 6.8 MJ of net energy for lactation (NEL)/kg; 14.0% crude protein (CP) ], or a middle energy density diet (MD, n = 13; 6.2 MJ NEh/kg; 14.0% CP), or a low energy density diet (LD, n = 13; 5.4 MJ NEh/kg; 14.0% CP) from d 21 before expected day of calving. After parturition, all cows were fed the same lactation diet to d 70 in milk (DIM). The DMI and NEE intake prepartum were decreased by the reduced energy density diets (P 〈 0.05). The LD group consumed 1.3 last 24 h before calving. The milk yield and the postpartum kg/d (DM) more diet compared with HD group in the DMI were increased by the reduced energy density diet prepartum (P 〈 0.05). The changes in BCS and BW prepartum and postpartum were not affected by prepartum diets HD group had higher milk fat content and lower lactose content compared with LD group during the first 3 wk of lactation (P 〈 0.05). The energy consumption for HD, MD and LD groups were 149.8%, 126.2% and 101.1 % of their calculated energy requirements prepartum (P 〈 0.05), and 72.7%, 73.1% and 7.5.2% during the first 4 wk postpartum, respectively. In conclusion, the low energy density prepartum diet was effective in controlling NF_L intake prepartum, and was beneficial in increasing DMI and milk yield, and alleviating negative EB postpartum.
文摘Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.